868 resultados para Mitotic stability
Resumo:
The behavior of Pt/C and Pt-RuO(x)/C electrodes subjected to a larger number of potential scans and constant potential for prolonged time periods was investigated in the absence and presence of methanol. The structural changes were analyzed on the basis of the modifications observed in the X-ray diffraction pattern of the catalysts. Carbon monoxide stripping experiments were performed before and after the potential scans, thus enabling analysis of the behavior of the electrochemically active surface area. The resulting solutions were examined by inductively coupled plasma mass spectrometry (ICP-MS). There was reduction in the electrochemically active surface area, as well as increase in crystallite size and dissolution of catalyst components after the potential scan tests. Catalyst degradation was more pronounced in the presence of methanol, and cyclic potential conditions accelerate the degradation mechanisms. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
Streptococcus pyogenes infections remain a health problem in several countries due to poststreptococcal sequelae. We developed a vaccine epitope (StreptInCor) composed of 55 amino acids residues of the C-terminal portion of the M protein that encompasses both T and B cell protective epitopes. The nuclear magnetic resonance (NMR) structure of the StreptInCor peptide showed that the structure was composed of two microdomains linked by an 18-residue alpha-helix. A chemical stability study of the StreptInCor folding/unfolding process using far-UV circular dichroism showed that the structure was chemically stable with respect to pH and the concentration of urea. The T cell epitope is located in the first microdomain and encompasses 11 out of the 18 alpha-helix residues, whereas the B cell epitope is in the second microdomain and showed no alpha-helical structure. The prediction of StreptInCor epitope binding to different HLA class II molecules was evaluated based on an analysis of the 55 residues and the theoretical possibilities for the processed peptides to fit into the P1, P4, P6, and P9 pockets in the groove of several HLA class II molecules. We observed 7 potential sites along the amino acid sequence of StreptInCor that were capable of recognizing HLA class II molecules (DRB1*, DRB3*, DRB4*, and DRB5*). StreptInCoroverlapping peptides induced cellular and humoral immune responses of individuals bearing different HLA class II molecules and could be considered as a universal vaccine epitope.
Resumo:
Condensation of (-)-norephedrine with excess formaldehyde under mild conditions leads to formation of the 2:1 condensation product N,N'-methylenebis(4-methyl-5-phenyl)oxazolidine compared with the reaction with 1 mol of formaldehyde, which leads to 4-methyl-5-phenyloxazolidine. H-1 and C-13 NMR spectroscopy was used to monitor the stability of this compound and its decomposition products. The 2:1 condensation product is found to be stable in CDC1(3) but breaks down rapidly in CD3OD to yield a 50:50 mixture of 4-methyl-5-phenyloxazolidine and 3-hydroxymethyl-4-methyl-5-phenyloxazolidine. Upon addition of D2O to this equimolar mixture, the latter compound decomposes to norephedrine and formaldehyde, whereas the former compound is stable. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
O-Acyl esters were prepared from salicylic acid and diflunisal by esterification with the appropriate acyl anhydride (in the presence of sulfuric acid at 80 degrees C) or acyl chloride (in the presence of pyridine at 0 degrees C). Synthesis, identification and characterization of these compounds is described. In vitro hydrolysis, solubility and protein binding studies of these O-acyl esters were performed. For the diflunisal esters, the melting points fell as the side chain was increased from ethyl to pentyl. The melting points showed no significant difference as the length of the side chain was increased from pentyl to heptyl. The aspirin analogues showed a similar trend, The relationship between solubility and carbon chain length agreed closely with that for the melting points with carbon chain length. In vitro non-enzymatic hydrolysis studies concluded that: (1) hydrolysis rate constants generally decreased with carbon chain length; (2) the diflunisal esters have shorter half lives compared with their salicylate counterparts; and (3) the in vitro hydrolysis of these compounds was retarded by the presence of bovine serum albumin. Protein binding experiments showed that the strength of binding of the aspirin and diflunisal analogues to bovine serum albumin increased with carbon chain length. (C) 1997 Elsevier Science B.V.
Resumo:
DsbA, a 21-kDa protein from Escherichia coli, is a potent oxidizing disulfide catalyst required for disulfide bond formation in secreted proteins. The active site of DsbA is similar to that of mammalian protein disulfide isomerases, and includes a reversible disulfide bond formed from cysteines separated by two residues (Cys3O-Pro31-His32-Cys33). Unlike most protein disulfides, the active-site disulfide of DsbA is highly reactive and the oxidized form of DsbA is much less stable than the reduced form at physiological pH. His32, one of the two residues between the active-site cysteines, is critical to the oxidizing power of DsbA and to the relative instability of the protein in the oxidized form. Mutation of this single residue to tyrosine, serine, or leucine results in a significant increase in stability (of similar to 5-7 kcal/mol) of the oxidized His32 variants relative to the oxidized wild-type protein. Despite the dramatic changes in stability, the structures of all three oxidized DsbA His32 Variants are very similar to the wild-type oxidized structure, including conservation of solvent atoms near the active-site residue, Cys3O. These results show that the His32 residue does not exert a conformational effect on the structure of DsbA. The destabilizing effect of His32 on oxidized DsbA is therefore most likely electrostatic in nature.
Resumo:
Queiroz BC, Cagliari MF, Amorim CF, Sacco IC. Muscle activation during four Pilates core stability exercises in quadruped position. Arch Phys Med Rehabil 2010;91: 86-92. Objective: To compare the activity of stabilizing trunk and hip muscles in 4 variations of Pilates stabilizing exercises in the quadruped position. Design: Repeated-measures descriptive study. Setting: A biomechanics laboratory at a university school of medicine. Participants: Healthy subjects (N=19; mean age +/- SD, 31 +/- 5y; mean weight +/- SD, 60 +/- 11 kg; mean height +/- SD, 166 +/- 9cm) experienced in Pilates routines. Interventions: Surface electromyographic signals of iliocostalis, multifidus, gluteus maximus, rectus abdominis, and external and internal oblique muscles were recorded in 4 knee stretch exercises: retroverted pelvis with flexed trunk; anteverted pelvis with extended trunk; neutral pelvis with inclined trunk; and neutral pelvis with trunk parallel to the ground. Main Outcome Measures: Root mean square values of each muscle and exercise in both phases of hip extension and flexion, normalized by the maximal voluntary isometric contraction. Results: The retroverted pelvis with flexed trunk position led to significantly increased external oblique and gluteus maximus muscle activation. The anteverted pelvis with trunk extension significantly increased multifidus muscle activity. The neutral pelvis position led to significantly lower activity of all muscles. Rectus abdominis muscle activation to maintain body posture was similar in all exercises and was not influenced by position of the pelvis and trunk. Conclusions: Variations in the pelvic and trunk positions in the knee stretch exercises change the activation pattern of the multifidus, gluteus maximus, rectus abdominis, and oblique muscles. The lower level of activation of the rectus abdominis muscle suggests that pelvic stability is maintained in the 4 exercise positions.
Resumo:
We present a comparative study of the physico-chemical properties, in vitro cytotoxicity and in vivo antibody production of surface-complexed DNA in EPC/DOTAP/DOPE (50/25/25% molar) liposomes and DOTAP/DOPE (50/50% molar) lipoplexes. The study aims to correlate the biological behavior and structural properties of the lipid carriers. We used DNA-hsp65, whose naked action as a gene vaccine against tuberculosis has already been demonstrated. Additionally, surface-complexed DNA-hsp65 in EPC/DOTAP/DOPE (50/25/25% molar) liposomes was effective as a single-dose tuberculosis vaccine. The results obtained showed that the EPC inclusion stabilized the DOTAP/DOPE structure, producing higher melting temperature and lower zeta potential despite a close mean hydrodynamic diameter. Resemblances in morphologies were identified in both structures, although a higher fraction of loaded DNA was not electrostatically bound in EPC/DOTAP/DOPE. EPC also induced a striking reduction in cytotoxicity, similar to naked DNA-hsp65. The proper immune response lead to a polarized antibody production of the IgG2a isotype, even for the cytotoxic DOTAP/DOPE. However, the antibody production was detected at 15 and 30 days for DOTAP/DOPE and EPC/DOTAP/DOPE, respectively. Therefore, the in vivo antibody production neither correlates with the in vitro cytotoxicity, nor with the structural stability alone. The synergistic effect of the structural stability and DNA electrostatic binding upon the surface of structures account for the immunological effects. By adjusting the composition to generate proper packing and cationic lipid/DNA interaction, we allow for the optimization of liposome formulations for required immunization or gene therapy. In a specific manner, our results contribute to studies on the tuberculosis therapy and vaccination. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA(1,2). Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in E mu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc- overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap- dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site ( IRES)- dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic- specific expression of the endogenous IRES- dependent form of Cdk11 ( also known as Cdc21 and PITSLRE)(3-5), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in E mu-Myc/+ mice. When accurate translational control is re- established in E mu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post- genomic level.
Resumo:
To identify genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a loss-of-function mutation in palA, a gene in the pH-responsive signal transduction pathway, suppression subtractive hybridization was performed between RNA isolated from the biA1 and biA1 palA1 strains grown under limiting inorganic phosphate at pH 5.0. We have identified several genes upregulated in the biA1 palA1 mutant strain that play important roles in mitotic fidelity, stress responses, enzyme secretion, signal transduction mechanisms, development, genome stability, phosphate sensing, and transcriptional regulation among others. The upregulation of eight of these transcripts was also validated by Northern blot. Moreover, we show that a loss of function mutation in the palA gene drastically reduced the neutral sugar content of the acid phosphatase PacA secreted by the fungus A. nidulans grown at pH 5.0 compared with a control strain.