989 resultados para Milk products
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical notes and index.
Resumo:
Mode of access: Internet.
Resumo:
Formulated food systems are becoming more sophisticated as demand grows for the design of structural and nutritional profiles targeted at increasingly specific demographics. Milk protein is an important bio- and techno-functional component of such formulations, which include infant formula, sports supplements, clinical beverages and elderly nutrition products. This thesis outlines research into ingredients that are key to the development of these products, namely milk protein concentrate (MPC), milk protein isolate (MPI), micellar casein concentrate (MCC), β-casein concentrate (BCC) and serum protein concentrate (SPC). MPC powders ranging from 37 to 90% protein (solids basis) were studied for properties of relevance to handling and storage of powders, powder solubilisation and thermal processing of reconstituted MPCs. MPC powders with ≥80% protein were found to have very poor flowability and high compressibility; in addition, these high-protein MPCs exhibited poor wetting and dispersion characteristics during rehydration in water. Heat stability studies on unconcentrated (3.5%, 140°C) and concentrated (8.5%, 120°C) MPC suspensions, showed that suspensions prepared from high-protein MPCs coagulated much more rapidly than lower protein MPCs. β-casein ingredients were developed using membrane processing. Enrichment of β-casein from skim milk was performed at laboratory-scale using ‘cold’ microfiltration (MF) at <4°C with either 1000 kDa molecular weight cut-off or 0.1 µm pore-size membranes. At pilot-scale, a second ‘warm’ MF step at 26°C was incorporated for selective purification of micellised β-casein from whey proteins; using this approach, BCCs with β-casein purity of up to 80% (protein basis) were prepared, with the whey protein purity of the SPC co-product reaching ~90%. The BCC ingredient could prevent supersaturated solutions of calcium phosphate (CaP) from precipitating, although the amorphous CaP formed created large micelles that were less thermo-reversible than those in CaP-free systems. Another co-product of BCC manufacture, MCC powder, was shown to have superior rehydration characteristics compared to traditional MCCs. The findings presented in this thesis constitute a significant advance in the research of milk protein ingredients, in terms of optimising their preparation by membrane filtration, preventing their destabilisation during processing and facilitating their effective incorporation into nutritional formulations designed for consumers of a specific age, lifestyle or health status
Resumo:
The presence of amino groups and carbonyls renders fortified milk with ascorbic acid particularly susceptible to the reduction of available lysine and to the formation of Maillard reaction products (MRPs), as Nε-(Carboxyethyl)-L-lysine (CEL), Nε-(Carboxymethyl)-L-lysine (CML), Amadori products (APs) and off-flavors. A novel approach was proposed to control the Maillard reaction (MR) in fortified milk: ascorbic acid was encapsulated in a lipid coating and the effects were tested after a lab scale UHT treatment. Encapsulation promoted a delayed release of ascorbic acid and a reduction in the formation of MRPs. Total lysine increased up to 45% in milk with encapsulated ascorbic acid, while reductions in CML, CEL and furosine ranged from 10% to 53% compared with control samples. The effects were also investigated towards the formation of amide-AGEs (advanced glycation end products) by high resolution mass spectrometry (HRMS) revealing that several mechanisms coincide with the MR in the presence of ascorbic acid (AA).
Resumo:
Thermal treatments and storage influence milk quality, particularly in low lactose milk as the higher concentration of reducing sugars can lead to the increased formation of the Maillard reaction products (MRPs). The control of the Amadori products (APs) formation is the key step to mitigate the Maillard reaction (MR) in milk. The use of fructosamine oxidases, (Faox) provided promising results. In this paper, the effects of Faox I were evaluated by monitoring the concentration of free and bound MRPs in low lactose milk during shelf life. Results showed that the enzyme reduced the formation of protein-bound MRPs down to 79% after six days at 37 °C. Faox I lowered the glycation of almost all the free amino acids resulting effective on basic and polar amino acids. Data here reported corroborate previous findings on the potentiality of Faox enzymes in controlling the early stage of the MR in foods.
Resumo:
Effective incorporation of a probiotic into foods requires the culture to remain viable all along processing and storage, without adverse alterations to sensory characteristics. The objective of this work was developing Minas-type fresh cheese with probiotic properties from buffalo milk. Four batches of Minas-type fresh cheese were prepared using buffalo milk: batch T1 in which neither culture nor lactic acid added; batch T3 in which only lactic acid added; batches T2 and T4 , both added of Lactobacillus acidophilus LAC 4, but T4 was also acidified. Resulting cheeses were evaluated for probiotic culture stability, texture profile, sensory acceptance, and changes in pH. The T4 probiotic cheese presented hardness, gumminess, and chewiness significantly lower than the other treatments. However, values for springiness and cohesiveness did not differ between all cheeses, and no sensory differences (p > 0.05) were found between treatments for texture, taste, and overall acceptance. The addition of probiotic to the acidified cheese (T4) yielded best aroma. The populations of L. acidophilus were greater than 10(6) CFU g-1 after 28 days of storage all products. Minas-type fresh cheese from buffalo milk is a suitable food for the delivery of L. acidophilus, since the culture remained viable during the shelf life of the products and did not negative affect analysed parameters.
Resumo:
Milk intake is widely recommended for a healthy diet. Recent evidences suggest that milk/dairy products are associated with a lower risk of type 2 diabetes and hypertension. On the other hand, high calcium intake has been associated with a higher risk of prostate cancer. The calcium and vitamin D content in dairy foods could have beneficial effects on glucose metabolism and renin/angiotensin system as well regulates body weight. The association between high dairy/calcium consumption and prostate cancer risk are related to the presence of estrogens and insulin like growth factor (IGF-I) in milk. Based on the current evidence, it is possible that milk/dairy products, when consumed in adequate amounts and mainly with reduced fat content, has a beneficial effect on the prevention of hypertension and diabetes. Its potential role in the pathogenesis of prostate cancer is not well supported and requires additional study.
Resumo:
Blends of milk fat and canola oil (MF:CNO) were enzymatically interesterified (EIE) by Rhizopus oryzne lipase immobilized on polysiloxane-polyvinyl alcohol (SiO(2)-PVA) composite, in a solvent-free system. A central composite design (CCD) was used to optimize the reaction, considering the effects of different mass fractions of binary blends of MF:CNO (50:50, 65:35 and 80:20) and temperatures (45, 55 and 65 degrees C) on the composition and texture properties of the interesterified products, taking the interesterification degree (ID) and consistency (at 10 degrees C) as response variables. For the ID variable both mass fraction of milk fat in the blend and temperature were found to be significant, while for the consistency only mass fraction of milk fat was significant. Empiric models for ID and consistency were obtained that allowed establishing the best interesterification conditions: blend with 65 % of milk fat and 35 %, of canola oil, and temperature of 45 degrees C. Under these conditions, the ID was 19.77 %) and the consistency at 10 degrees C was 56 290 Pa. The potential of this eco-friendly process demonstrated that a product could be obtained with the desirable milk fat flavour and better spreadability under refrigerated conditions.
Resumo:
This study investigates the kinetics of acidification, fatty acid (FA) profile and conjugated linoleic acid (CLA, C18:2 c9, t11) content in fermented milks prepared from organic and conventional milk. Fermented milks were manufactured with five mixed cultures: four different strains of Bifidobacterium animalis subsp. lactis (BL04, B94, BB12 and HN019) and Lactobacillus delbrueckii subsp. bulgaricus LB340, in co-culture with Streptococcus thermophilus TA040. The composition of milk was evaluated, and the kinetics of acidification was followed by continuous pH measurement using the Cinac system. The profile of FA, including CLA, was analyzed by gas chromatography. The chemical composition of conventional and organic milk was similar, with the exception of protein and Fe, the concentrations of which were higher in the organic milk. The rate of acidification was significantly influenced by the type of milk and the bacterial strain used. Co-cultures St-HN019 and St-BB12 showed higher maximal acidification rates in both milks. Final counts of S. thermophilus (9.0-10.1 log(10) colony forming units (CFU) . mL(-1), L)actobacillus bulgaricus (8.2-8.5 log(10) CFU . mL(-1)) and B. animalis subsp. lactis strains (8.3-9.3 log(10) CFU . mL(-1)) did not differ significantly in either milk. Unexpectedly, all fermented organic milks contained significantly higher amounts of CLA than the same milk before fermentation, whereas CLA amounts did not change during fermentation of conventional milk. Regardless of the type of milk, CLA was found to be significantly positively correlated with trans-vaccenic acid and negatively correlated with linoleic acid. Moreover, the CLA contents were significantly higher in fermented milks showing shorter fermentation times.
Resumo:
The rheological behavior of milk cream was studied for different fat contents (0.10 to 0.31) and for a wide temperature range (2 and 87C) using a rotational rheometer. Newtonian behavior was observed, except for fat content between 0.20 and 0.31 and temperature between 2 and 33C, where viscoplastic behavior was remarkable. The rheological parameters (Newtonian viscosity, plastic viscosity and yield stress) and density were well correlated to temperature and fat content. Tube friction factor during flow of cream was experimentally obtained at various flow rates, temperatures and tube diameters (86 < Re < 2.3 x 104, 38 < Re(B) < 8.8 x 103, 1.1 x 103 < He < 6.7 x 103). The proposed correlations for density and rheological parameters were applied for the prediction of friction factor for laminar and turbulent flow of cream using well-known equations for Newtonian and viscoplastic flow. The good agreement between experimental and predicted values confirms the reliability of the proposed correlations for describing the flow behavior of cream. PRACTICAL APPLICATIONS This paper presents correlations for the calculation of density and rheological parameters (Newtonian viscosity, Bingham plastic viscosity and yield stress) of milk cream as functions of temperature (2-87C) and fat content (0.10-0.31). Because of the large temperature range, the proposed correlations are useful for process design and optimization in dairy processing. An example of practical application is presented in the text, where the correlations were applied for the prediction of friction factor for laminar and turbulent tube flow of cream using well-known equations for Newtonian and viscoplastic flow, which are summarized in the text. The comparison with experimental data obtained at various flow rates, temperatures and tube diameters showed a good agreement, which confirms the reliability of the proposed correlations.
Resumo:
The objective of this study was to evaluate the sensory stability of ultra-high temperature (UHT) milk subjected to different heat treatments and stored at room temperature in white high density polyethylene bottles (HDPE) pigmented with titanium dioxide. Two lots of 300 units each were processed, respectively, at 135 and 141 degrees C/10 s using indirect heating and subsequently aseptically filled in an ISO class 7 clean room. These experimental lots were evaluated for appearance, aroma, flavor, and overall appreciation and compared to samples of commercial UHT milk purchased from local commercial stores. The time-temperature combinations investigated did not affect either the acceptability or the shelf life of the milk. Despite the limited light barrier properties of HDPE bottles, the product contained in the package tested exhibited good stability, with a shelf life ranging from 4 to 11 wk. Within this time period, the acceptability of the experimental lots was similar to that of the commercial products. The results achieved in this study contribute to turn the low-cost UHT system investigated into a technically viable option for small-size dairy processing plants.
Resumo:
The objective of this experiment was to evaluate the effects of replacing coastcross hay NDF by soybean hull (SH) NDF on the lactation performance and eating behavior of ewes and also on the performance of their lambs. Fifty-six Santa Ines lactating ewes (56.1 +/- 6.8 kg of initial BW; mean +/- SD) were penned individually and used in a randomized complete block design with 14 blocks and 4 treatments. Diets were formulated to provide similar concentrations of NDF (56%) and CP (16%). The SH NDF replaced 33 (SH33), 67 (SH67), or 100% (SH100) of the NDF contributed by coastcross hay in a 70% forage-based diet (SH0), resulting in SH inclusion rates of 0, 25, 54, and 85% of the dietary DM. Once a week, from the second to the eighth week of lactation (weaning time), ewes were separated from their lambs, stimulated by a 6-IU i.v. oxytocin injection, and hand milked to empty the udder. After 3 h, milk production was obtained after the same procedure. Quadratic effect for milk production (142.4, 179.8, 212.6, and 202.9 g/3 h) and cubic effect for DMI (2.27, 2.69, 3.25, and 3.00 kg/d) were observed as SH inclusion increased from 0 to 85% of the dietary DM. Milk fat (7.59, 7.86, 7.59, and 7.74%), protein (4.53, 4.43, 4.40, and 4.55%), and total solids (18.24, 18.54, 18.39, and 18.64%) did not differ among the 70% forage-based diet and diets with SH NDF replacing 33, 67, or 100% of the NDF. A linear increase in lactose concentration was observed with SH inclusion. Ewe BW gain during the trial showed a cubic response (0.37, 0.03, 4.80, and 2.80 kg) with SH inclusion. The preweaning ADG of lambs increased linearly, and ADG of lambs after weaning decreased linearly with SH inclusion. Final BW of lambs (2 wk after weaning) did not differ among treatments. Eating behavior observations were conducted with 44 ewes. The same facilities, experimental design, dietary treatments, and feeding management were used. Observations were visually recorded every 5 min for a 24-h period when ewes were 46 +/- 6.8 d in milk. Eating time (min/d, min/g of DMI, and min/g of NDF intake) and time expended in rumination and chewing activities (min/g of DMI and min/g of NDF intake) decreased linearly with the addition of SH in the diets. The inclusion of SH improved DMI and milk production, also reflecting on the BW of lambs at weaning. Milk performance was not affected when SH NDF replaced 100% of hay NDF.
Resumo:
The effects of refrigeration, freezing and substitution of milk fat by inulin and whey protein concentrate (WPC) on the texture and sensory features of synbiotic guava mousses supplemented with the probiotic, Lactobacillus acidophilus La-5, and the prebiotic fibre oligofructose, were studied. The frozen storage (-18 +/- 1 degrees C), followed by thawing at 4 degrees C before the analyses, and the complete replacement of the milk fat by inulin plus WPC, led to significant differences in the instrumental texture parameters of mousses (P < 0.05). Nonetheless, these changes did not affect the sensory acceptability of the products studied. The frozen storage may be employed to extend the shelf-life of synbiotic guava mousses. Additionally, to obtain a texture profile similar to the traditional product, the simultaneous addition of inulin and WPC is recommended only for the partial replacement of milk fat in refrigerated and frozen mousses, and the total proportion of both ingredients together should not exceed 2.6%. (C) 2010 Elsevier Ltd. All rights reserved.