966 resultados para Micro-raman scattering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of second-order Raman-scattering experiments on n- and p-type 4H-SiC are presented,covering the acoustic and the optical overtone spectral regions.Some of the observed structures in the spectra are assigned to particular phonon branches and the points in the Brillouin zone from which the scattering originates.There exists a doublet at 626/636cm-1 with energy difference about 10cm-1 in both n- and p-type 4H-SiC,which is similar to the doublet structure with the same energy difference founded in hexagonal GaN,ZnO, and AlN.The cutoff frequency at 1926cm-1 of the second-order Raman is not the overtone of the A1(LO) peak of the n-type doping 4H-SiC,but that of the undoping one.The second-order Raman spectrum of 4H-SiC can hardly be affected by doping species or doping density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural dependence on annealing of a-SiOx:H was studied by using infrared absorption and Raman scattering. The appearance of Raman peaks in the range of 513-519cm(-1) after 1170 degreesC annealing was interpreted as the formation nanocrystalline silicon with the sizes from 3-10nm. The Raman spectra also show the existence of amorphous-like silicon phase, which is associated with Si-Si bond re-construction at boundaries of silicon nanocrystallites. The presence of the shoulder at 980cm(-1) of Si-O-Si stretching vibration at 1085cm(-1) in infrared spectra imply that except that SiO2 phase, there is silicon sub-oxide phase in the films annealed at 1170 degreesC. This sub-oxide phase is located at the interface between Si crystallites and SiO2, and thus support the shell model for the mixed structures of Si grains and SiO2 matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze low-temperature Raman and photoluminescence spectra of MBE-grown GaN layers on sapphire. Strong and sharp Raman peaks are observed in the low frequency region. These peaks, which are enhanced by excitation in resonance with yellow luminescence transitions, are attributed to electronic transitions related to shallow donor levels in hexagonal GaN. It is proposed that a low frequency Raman peak at 11.7 meV is caused by a pseudo-local vibration mode related to defects involved in yellow luminescence transitions. The dependence of the photoluminescence spectra on temperature gives additional information about the residual impurities in these GaN layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A useful method for the fabrication of three-dimensional gold nanowire networks based on the chemical reduction of HAuCl4 with trisodium citrate was presented. The coverage of the 3D gold nanowire networks was tunable by altering precursor concentration. The as-prepared 3D gold nanowire networks could be used as surface-enhanced Raman scattering (SERS) substrates and examined by 4-aminothiophenol (4-ATP) as a probe molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of 4,4'-thiobisbenzenethiol (4,4'-TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface-enhanced Raman scattering (SERS) for the first time, which indicates that 4,4'-TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H-atoms of the S-H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4'-TBBT in the two systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective and facile method for the fabrication of a surface-enhanced Raman scattering (SERS)-active film with closely packed gold nanoparticle (AuNP) arrays is proposed by self-assembly of different sizes ( 16, 25, 40 and 70 nm) of AuNPs at a toluene/water interface with ethanol as the inducer. The as-prepared AuNP arrays exhibit efficient Raman scattering enhancement, and the enhancement factors estimated using p-aminothiophenol as a probe molecule range from 10(5) to 10(7).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective and facile method for fabrication of large area of aggregated gold nanorods (AuNRs) film was proposed by self-assembly of AuNRs at a toluene/water interface for the first time. It was found that large area of aggregated AuNRs film could be formed at the interface of toluene and water due to the interfacial tension between the two phases. The obtained large area of aggregated AuNRs film exhibits strong surface-enhanced Raman scattering (SERS) activity with 4-aminothiophenol (4-ATP) and 2-aminothiophenol (2-ATP) as the probe molecules based on the strong electromagnetic coupling effect between the very adjacent AuNRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, a sensitive spectroscopic assay based on surface-enhanced Raman spectroscopy (SERS) using gold nanoparticles as substrates was developed for the rapid detection protein-protein interactions. Detection is achieved by specific binding biotin-modification antibodies with protein-stabilized 30 nm gold nanoparticles, followed by the attachment of avidin-modification Raman-active dyes. As a proof-of-principle experiment, a well-known biomolecular recognition system, IgG with protein A, was chosen to establish this new spectroscopic assay. Highly selective recognition of IgG down to 1 ng/ml in solution has been demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver nanoparticles (Ag NPs) are one of the active substrates that are employed extensively in surface-enhanced Raman scattering (SERS), and aggregations of Ag NPs play an important role in enhancing the Raman signals. In this paper, we fabricated two kinds of SERS-active substrates utilizing the electrostatic adsorption and superior assembly properties of type I collagen. These were collagen-Ag NP aggregation films and nanoporous Ag films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrated an effective enviromentally friendly synthesis route to prepare noble metallic (Au, Ag, Pt and Pd) nanoparticles (NPs) networks mediated by type I collagen in the absence of any seeds or surfactants. In the reactions, type I collagen served as stabilizing agent and assembly template for the synthesized metallic NPs. The hydrophobic interaction between collagen and mica interface as well as the hydrogen bonds between inter- and intra-collagen molecules play important roles in the formation of collagen-metallic NPs networks. The noble metallic NPs networks have many advantages in the applications of Surface-Enhanced Raman Scattering (SERS) and electrochemistry detection. Typically, the as-prepared Ag NPs networks reveal great Raman enhancement activity for 4-ATP, and can even be used to detect low concentration of DNA base, adenine.