870 resultados para Maximal monotone operators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy-reasoning theory is widely used in industrial control. Mathematical morphology is a powerful tool to perform image processing. We apply fuzzy-reasoning theory to morphology and suggest a scheme of fuzzy-reasoning morphology, including fuzzy-reasoning dilation and erosion functions. These functions retain more fine details than the corresponding conventional morphological operators with the same structuring element. An optical implementation has been developed with area-coding and thresholding methods. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let F = Ǫ(ζ + ζ –1) be the maximal real subfield of the cyclotomic field Ǫ(ζ) where ζ is a primitive qth root of unity and q is an odd rational prime. The numbers u1=-1, uk=(ζk-k)/(ζ-ζ-1), k=2,…,p, p=(q-1)/2, are units in F and are called the cyclotomic units. In this thesis the sign distribution of the conjugates in F of the cyclotomic units is studied.

Let G(F/Ǫ) denote the Galoi's group of F over Ǫ, and let V denote the units in F. For each σϵ G(F/Ǫ) and μϵV define a mapping sgnσ: V→GF(2) by sgnσ(μ) = 1 iff σ(μ) ˂ 0 and sgnσ(μ) = 0 iff σ(μ) ˃ 0. Let {σ1, ... , σp} be a fixed ordering of G(F/Ǫ). The matrix Mq=(sgnσj(vi) ) , i, j = 1, ... , p is called the matrix of cyclotomic signatures. The rank of this matrix determines the sign distribution of the conjugates of the cyclotomic units. The matrix of cyclotomic signatures is associated with an ideal in the ring GF(2) [x] / (xp+ 1) in such a way that the rank of the matrix equals the GF(2)-dimension of the ideal. It is shown that if p = (q-1)/ 2 is a prime and if 2 is a primitive root mod p, then Mq is non-singular. Also let p be arbitrary, let ℓ be a primitive root mod q and let L = {i | 0 ≤ i ≤ p-1, the least positive residue of defined by ℓi mod q is greater than p}. Let Hq(x) ϵ GF(2)[x] be defined by Hq(x) = g. c. d. ((Σ xi/I ϵ L) (x+1) + 1, xp + 1). It is shown that the rank of Mq equals the difference p - degree Hq(x).

Further results are obtained by using the reciprocity theorem of class field theory. The reciprocity maps for a certain abelian extension of F and for the infinite primes in F are associated with the signs of conjugates. The product formula for the reciprocity maps is used to associate the signs of conjugates with the reciprocity maps at the primes which lie above (2). The case when (2) is a prime in F is studied in detail. Let T denote the group of totally positive units in F. Let U be the group generated by the cyclotomic units. Assume that (2) is a prime in F and that p is odd. Let F(2) denote the completion of F at (2) and let V(2) denote the units in F(2). The following statements are shown to be equivalent. 1) The matrix of cyclotomic signatures is non-singular. 2) U∩T = U2. 3) U∩F2(2) = U2. 4) V(2)/ V(2)2 = ˂v1 V(2)2˃ ʘ…ʘ˂vp V(2)2˃ ʘ ˂3V(2)2˃.

The rank of Mq was computed for 5≤q≤929 and the results appear in tables. On the basis of these results and additional calculations the following conjecture is made: If q and p = (q -1)/ 2 are both primes, then Mq is non-singular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this dissertation is to study the theory of distributions and some of its applications. Certain concepts which we would include in the theory of distributions nowadays have been widely used in several fields of mathematics and physics. It was Dirac who first introduced the delta function as we know it, in an attempt to keep a convenient notation in his works in quantum mechanics. Their work contributed to open a new path in mathematics, as new objects, similar to functions but not of their same nature, were being used systematically. Distributions are believed to have been first formally introduced by the Soviet mathematician Sergei Sobolev and by Laurent Schwartz. The aim of this project is to show how distribution theory can be used to obtain what we call fundamental solutions of partial differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better address the charter and party boat fishery needs in the U.S. Gulf of Mexico, fishery managers must understand the linkages between the industry and other groups and organizations that affect its success. Gulf state charter and party boat operators were interviewed to ascertain the extent of their social network linkages, membership in community organizations, business community relationships, and linkages to information sources. Approximately one-third to one-half of the charter and party boat operators did not belong to local community organizations that could assist their business through tourism promotion or natural resource protection. Despite their limited integration in the community, the vast majority of operators gave and received referrals from other businesses. Of four major information sources, the National Weather Service and the County Marine Extension agents were rated highest and lowest, respectively, in mean importance to charter and party boat operators. Results suggest that business success can be enhanced by strengthening network ties between operators and local businesses, chambers of commerce, and tourism organizations. For this to occur, individual operators and charter/party boat organizations need to become more effective in representing industry interests. Informational linkages between industry and govemment agencies also need improvement.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper establishes a global contraction property for networks of phase-coupled oscillators characterized by a monotone coupling function. The contraction measure is a total variation distance. The contraction property determines the asymptotic behavior of the network, which is either finite-time synchronization or asymptotic convergence to a splay state. © 2012 Elsevier B.V. All rights reserved.