Folner sequences and finite operators


Autoria(s): Yakubovich, Dmitry V.; Lledó, Fernando,1967-
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/10/2012

Resumo

This article analyzes Folner sequences of projections for bounded linear operators and their relationship to the class of finite operators introduced by Williams in the 70ies. We prove that each essentially hyponormal operator has a proper Folner sequence (i.e. a Folner sequence of projections strongly converging to 1). In particular, any quasinormal, any subnormal, any hyponormal and any essentially normal operator has a proper Folner sequence. Moreover, we show that an operator is finite if and only if it has a proper Folner sequence or if it has a non-trivial finite dimensional reducing subspace. We also analyze the structure of operators which have no Folner sequence and give examples of them. For this analysis we introduce the notion of strongly non-Folner operators, which are far from finite block reducible operators, in some uniform sense, and show that this class coincides with the class of non-finite operators.

Formato

21 p.

Identificador

http://hdl.handle.net/2072/204756

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;1118

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Operadors (Matèmatica) #Seqüències (Matemàtica) #C*-àlgebres #517 - Anàlisi
Tipo

info:eu-repo/semantics/preprint