910 resultados para MOSFET devices
Resumo:
AIM The aim of this evidence-based practice (EBP) project was to promote adherence to the current best practice in monitoring and optimal replacement of peripheral intravenous device (PIVD). METHODS This EBP project took place in a 30-bed acute general surgical ward. Twenty in-patients with PIVD in situ for 4 days or more were recruited. There were five stages in the project: identification of EBP topic, criteria, sample and setting; baseline; dissemination of baseline audit results and identification of best practice barriers; identification of barriers to EBP and implementation of strategies promoting EBP; and postimplementation audit. RESULTS There were eight criteria in this project. The first audit showed moderate compliance in PIVD monitoring and optimal replacement. The project identified three barriers: lack of awareness of the current evidence-based guidelines, hospital policy not being aligned with current guidelines and no standard form of documentation. In order to overcome these barriers the following strategies were used: audit and feedback, interactive educational meetings, reminders and hospital policy change. The second audit showed minor improvements in each criterion. Compliance with documentation remained a challenge, possibly because of the lack of standardised documentation. DISCUSSION Although the project did not render us the results we aimed for, it was successful because it highlighted the current EBP in PIVD management. The major challenges of the project were time and the lack of opinion leaders in our project team. We felt that more time was needed to adapt to the practice change and standardised documentation could not be developed in such a short time period. Further, the role of the opinion leader proved to be vital in this project. We felt that had we recruited more than one opinion leader, the results would have been different.
Resumo:
Purpose: Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods: Mean skin temperature (T̅sk) was assessed in thirty healthy males during 30 min rest (24.0± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery(24.0 ± 1.3°C, 56 ± 9%). T̅sk was assessed at four sites using two conductive devices(thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results: Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T̅sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions: These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T̅sk in the presence of, or following, metabolic and environmental induced heat stress.
Resumo:
This study constructs performance prediction models to estimate the end-user perceived video quality on mobile devices for the latest video encoding techniques –VP9 and H.265. Both subjective and objective video quality assessments were carried out for collecting data and selecting the most desirable predictors. Using statistical regression, two models were generated to achieve 94.5% and 91.5% of prediction accuracies respectively, depending on whether the predictor derived from the objective assessment is involved. These proposed models can be directly used by media industries for video quality estimation, and will ultimately help them to ensure a positive end-user quality of experience on future mobile devices after the adaptation of the latest video encoding technologies.
Resumo:
This thesis investigates the design of motivating and engaging software experiences. In particular it examines the use of video game elements in non-game contexts, known as gamification, and how to effectively design gamification experiences for smartphone applications. The original contribution of this thesis is a novel framework for designing gamification, derived from an iterative process of evaluating gamified prototypes. The outcomes of this research can help us to better understand the impact of gamification in today's society and how it can be used to design more effective software.
Resumo:
Neural interface devices and the melding of mind and machine, challenge the law in determining where civil liability for injury, damage or loss should lie. The ability of the human mind to instruct and control these devices means that in a negligence action against a person with a neural interface device, determining the standard of care owed by him or her will be of paramount importance. This article considers some of the factors that may influence the court’s determination of the appropriate standard of care to be applied in this situation, leading to the conclusion that a new standard of care might evolve.
Resumo:
Current mobile devices and streaming video services support high definition (HD) video, increasing expectation for more contents. HD video streaming generally requires large bandwidth, exerting pressures on existing networks. New generation of video compression codecs, such as VP9 and H.265/HEVC, are expected to be more effective for reducing bandwidth. Existing studies to measure the impact of its compression on users’ perceived quality have not been focused on mobile devices. Here we propose new Quality of Experience (QoE) models that consider both subjective and objective assessments of mobile video quality. We introduce novel predictors, such as the correlations between video resolution and size of coding unit, and achieve a high goodness-of-fit to the collected subjective assessment data (adjusted R-square >83%). The performance analysis shows that H.265 can potentially achieve 44% to 59% bit rate saving compared to H.264/AVC, slightly better than VP9 at 33% to 53%, depending on video content and resolution.
Resumo:
In various embodiments, optoelectronic devices are described herein. The optoelectronic device may include an optoelectronic cell arranged so as to wrap around a central axis wherein the cell includes a first conductive layer, a semi-conductive layer disposed over and in electrical communication with the first conductive layer, and a second conductive layer disposed over and in electrical communication with the semi-conductive layer. In various embodiments, methods for making optoelectronic devices are described herein. The methods may include forming an optoelectronic cell while flat and wrapping the optoelectronic cell around a central axis. The optoelectronic devices may be photovoltaic devices. Alternatively, the optoelectronic devices may be organic light emitting diodes.
Resumo:
We have designed, synthesized and utilized a new non-fullerene electron acceptor, 9,9′-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(2,7-dioctyl-4-(octylamino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) (B2), for use in solution-processable bulk-heterojunction devices. B2 is based on a central fluorene moiety, which was capped at both ends with an electron-accepting naphthalenediimide functionality. B2 exhibited excellent solubility (>30 mg mL−1 in chloroform), high thermal and photochemical stability, and appropriate energy levels for use with the classical polymer donor regioregular poly(3-hexylthiophene). A power conversion efficiency of 1.16 % was achieved for primitive bulk-heterojunction devices with a high fill factor of approximately 54 %.
Resumo:
Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.
Resumo:
Mobile devices are very popular among tertiary student populations. This study looks at student use of hand-held mobile devices within the context of a first year programming unit. This research sought for ways in which an educational app on these devices could be successfully integrated into such a class's learning.
Resumo:
Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm5 until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm5) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm5. Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation.
Resumo:
CdS nanoparticles exhibit size dependent optical and electrical properties. We report here the photocurrent and I-V characteristic studies of CdS nanoparticle devices. A sizable short circuit photocurrent was observed in the detection range governed by the size of the clusters. We speculate on the mechanisms leading to the photocurrent and emission in these nanometer scale systems.
Resumo:
Electric-motored personal mobility devices (PMDs) are appearing on Australian roads. While legal to import and own, their use is typically illegal for adult riders within the road transport system. However, these devices could provide an answer to traffic congestion by getting people out of cars for short trips (“first-and-last mile” travel). City of Ryde council, Macquarie University, and Transport for NSW examined PMD use within the road transport system. Stage 1 of the project examined PMD use within a controlled pedestrian environment on the Macquarie University campus. Three PMD categories were used: one-wheelers (an electric unicycle, the Solowheel); two-wheelers (an electric scooter, the Egret); and three-wheelers (the Qugo). The two-wheeled PMD was most effective in terms of flexibility. In contrast, the three-wheeled PMD was most effective in terms of speed. One-wheeled PMD riders were very satisfied with their device, especially at speed, but significant training and practice was required. Two-wheeled PMD riders had less difficulty navigating through pedestrian precincts and favoured the manoeuvrability of the device as the relative narrowness of the two-wheeled PMD made it easier to use on a diversity of path widths. The usability of all PMDs was compromised by the weight of the devices, difficulties in ascending steeper gradients, portability, and parking. This was a limited trial, with a small number of participants and within a unique environment. However, agreement has been reached for a Stage 2 extension into the Macquarie Park business precinct for further real-world trials within a fully functional road transport system.
Resumo:
The potential of using mobile devices to increase learner engagement within a small group of at-risk vocational education students was studied through a qualitative case study. It was found that the use of mobile devices could be a strategy educators may use to reduce the barriers these students often encounter within traditional classrooms. Notions of interactivity, ease of use, existing familiarity and fluency were found to be fundamental variables that were central to the group's use of mobile devices. The study provides direction for educators looking for innovative ways to engage students who struggle in a classroom situation.
Resumo:
With the aim of finding simple methods for the fabrication of He II refilling devices, He II flow has been studied through filters made from various fine powders (oxides and metals, grain sizes in the range 0.05–2 μm) by compacting them under pressure. The results obtained for the different states of He II flow, especially in the “breakthrough” and “easy flow” range, are explained by the fountain effect, He II hydrodynamics and the choking effect. According to the results, pressedpowder filters can be classified into three groups with different flow characteristics, of which the “good transfer filters” with a behaviour neatly described by simple theory are suitable for use in He II refilling devices.