940 resultados para MICROTUBULE-STABILIZING MACROLIDE
Resumo:
OBJECTIVES To evaluate the stabilizing function of atlanto-axial ligaments in dogs. STUDY DESIGN Cadaveric biomechanical study. ANIMALS Beagle dog cadavers (n = 10). METHODS The craniocervical region was collected from 10 Beagle cadavers, and the occipito-atlanto-axial region was prepared and freed from the surrounding muscles. Care was taken to preserve integrity of the atlantoaxial ligaments and atlantoaxial joint capsule. The atlanto-occipital joints were blocked with 2 diverging transarticular 1.8 mm positive threaded K-wires. Specimen extremities were embedded in polymethylmethacrylate (PMMA) and mounted on a simulator testing shear load at the atlantoaxial joint. Range of motion (ROM) and neutral zone (NZ) were determined with all ligaments intact, after cutting the apical ligament, both alar ligaments, the transverse ligaments and finally after cutting the dorsal atlantoaxial ligament. RESULTS ROM increased similarly and stepwise during testing. The most significant increase was observed after transection of the alar ligaments. CONCLUSION The alar ligaments seem to be the most important ligamentous structures for stabilization of the atlantoaxial joint under shear load.
Resumo:
The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.
Resumo:
Vertebrates produce at least seven distinct beta-tubulin isotypes that coassemble into all cellular microtubules. The functional differences among these tubulin isoforms are largely unknown, but recent studies indicate that tubulin composition can affect microtubule properties and cellular microtubule-dependent behavior. One of the isotypes whose incorporation causes the largest change in microtubule assembly is beta5-tubulin. Overexpression of this isotype can almost completely destroy the microtubule network, yet it appears to be required in smaller amounts for normal mitotic progression. Moderate levels of overexpression can also confer paclitaxel resistance. Experiments using chimeric constructs and site-directed mutagenesis now indicate that the hypervariable C-terminal region of beta5 plays no role in these phenotypes. Instead, we demonstrate that two residues found in beta5 (Ser-239 and Ser-365) are each sufficient to inhibit microtubule assembly and confer paclitaxel resistance when introduced into beta1-tubulin; yet the single mutation of residue Ser-239 in beta5 eliminates its ability to confer these phenotypes. Despite the high degree of conservation among beta-tubulin isotypes, mutations affecting residue 365 demonstrate that amino acid substitutions can be context sensitive; i.e. an amino acid change in one isotype will not necessarily produce the same phenotype when introduced into a different isotype. Modeling studies indicate that residue Cys-239 of beta1-tubulin is close to a highly conserved Cys-354 residue suggesting the possibility that disulfide formation could play a significant role in the stability of microtubules formed with beta1- but not with beta5-tubulin.
Resumo:
A novel erythromycin ribosome methylase gene, erm(44), that confers resistance to macrolide, lincosamide, and streptogramin B (MLSB) antibiotics was identified by whole-genome sequencing of the chromosome of Staphylococcus xylosus isolated from bovine mastitis milk. The erm(44) gene is preceded by a regulatory sequence that encodes two leader peptides responsible for the inducible expression of the methylase gene, as demonstrated by cloning in Staphylococcus aureus. The erm(44) gene is located on a 53-kb putative prophage designated ΦJW4341-pro. The 56 predicted open reading frames of ΦJW4341-pro are structurally organized into the five functional modules found in members of the family Siphoviridae. ΦJW4341-pro is site-specifically integrated into the S. xylosus chromosome, where it is flanked by two perfect 19-bp direct repeats, and exhibits the ability to circularize. The presence of erm(44) in three additional S. xylosus strains suggests that this putative prophage has the potential to disseminate MLSB resistance.
Resumo:
Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop.
Resumo:
Lead is efficiently protected against cathodic corrosion by the addition of diammonium salts in the electrolyte. The cationic coating of the cathode allows the efficient electroreduction of benzamides to benzylamines. The electrochemical deoxygenation of the amide is achieved without the use of oxophilic agents or sacrificial anodes. The surface of the lead cathode stays smooth and the cathode can be reused for multiple runs, providing <2.5 ppm of the crude product. Cyclic voltammetry studies reveal a shift in the onset potential of the hydrogen evolution reaction by −157 mV.
Resumo:
Barrier characteristics of brain endothelial cells forming the blood-brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, β-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and β-catenin and the junctional protein ZO-1 to brain endothelial junctions.
Resumo:
OBJECTIVE: To compare the biomechanical properties of a ventral transarticular lag screw fixation technique, a new dorsal atlantoaxial instability (AAI) clamp, and a new ventral AAI hook plate under sagittal shear loading after transection of the ligaments of the atlantoaxial joint. STUDY DESIGN: Cadaveric biomechanical study. ANIMALS: Canine cadavers (n = 10). MATERIALS AND METHODS: The occipitoatlantoaxial region of Beagles euthanatized for reasons unrelated to the study was prepared leaving only ligamentous structures and the joint capsules between the first 2 cervical vertebrae (C1 and C2). The atlanto-occipital joints were stabilized with 2 transarticular diverging positive threaded K-wires. The occipital bone and the caudal end of C2 were embedded in polymethylmethacrylate and loaded in shear to a force of 50 Newtons. The range of motion (ROM) and neutral zone (NZ) of the atlantoaxial joint were determined after 3 loading cycles with atlantoaxial ligaments intact, after ligament transection, and after fixation with each implant. The testing order of implants was randomly assigned. The implants tested last were subjected to failure testing. RESULTS: All stabilization procedures decreased the ROM and NZ of the atlantoaxial joint compared to transected ligament specimens. Only stabilization with transarticular lag screws and ventral plates produced a significant reduction of ROM compare to intact specimens. CONCLUSION: Fixation with transarticular lag screws and a ventral hook plate was biomechanically similar and provided more rigidity compared to dorsal clamp fixation. Further load cycling to failure tests and clinical studies are required before making clinical recommendations.
Resumo:
Genome alignment of a macrolide, lincosamide, and streptogramin B (MLSB)-resistant Staphylococcus fleurettii strain with an MLSB-susceptible S. fleurettii strain revealed a novel 11,513-bp genomic island carrying the new erythromycin resistance methylase gene erm(45). This gene was shown to confer inducible MLSB resistance when cloned into Staphylococcus aureus. The erm(45)-containing island was integrated into the housekeeping gene guaA in S. fleurettii and was able to form a circular intermediate but was not transmissible to S. aureus.
Resumo:
Local mRNA translation in neurons has been mostly studied during axon guidance and synapse formation but not during initial neurite outgrowth. We performed a genome-wide screen for neurite-enriched mRNAs and identified an mRNA that encodes mitogen-activated protein kinase kinase 7 (MKK7), a MAP kinase kinase (MAPKK) for Jun kinase (JNK). We show that MKK7 mRNA localizes to the growth cone where it has the potential to be translated. MKK7 is then specifically phosphorylated in the neurite shaft, where it is part of a MAP kinase signaling module consisting of dual leucine zipper kinase (DLK), MKK7, and JNK1. This triggers Map1b phosphorylation to regulate microtubule bundling leading to neurite elongation. We propose a model in which MKK7 mRNA localization and translation in the growth cone allows for a mechanism to position JNK signaling in the neurite shaft and to specifically link it to regulation of microtubule bundling. At the same time, this uncouples activated JNK from its functions relevant to nuclear translocation and transcriptional activation.
Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes.
Resumo:
Glutathione oxidants such as tertiary butyl hydroperoxide were shown previously to prevent microtubule assembly and cause breakdown of preassembled cytoplasmic microtubules in human polymorphonuclear leukocytes. The objectives of the present study were to determine the temporal relationship between the attachment and ingestion of phagocytic particles and the assembly of microtubules, and simultaneously to quantify the levels of reduced glutathione and products of its oxidation as potential physiological regulators of assembly. Polymorphonuclear leukocytes from human peripheral blood were induced to phagocytize opsonized zymosan at 30 degrees C. Microtubule assembly was assessed in the electron microscope by direct counts of microtubules in thin sections through centrioles. Acid extracts were assayed for reduced glutathione (GSH) and oxidized glutathione (GSSG), by the sensitive enzymatic procedure of Tietze. Washed protein pellets were assayed for free sulfhydryl groups and for mixed protein disulfides with glutathione (protein-SSG) after borohydride splitting of the disulfide bond. Resting cells have few assembled microtubules. Phagocytosis induces a cycle of rapid assembly followed by disassembly. Assembly is initiated by particle contact and is maximal by 3 min of phagocytosis. Disassembly after 5-9 min of phagocytosis is preceded by a slow rise in GSSG and coincides with a rapid rise in protein-SSG. Protein-SSG also increases under conditions in which butyl hydroperoxide inhibits the assembly of microtubules that normally follows binding of concanavalin A to leukocyte cell surface receptors. No evidence for direct involvement of GSH in the induction of assembly was obtained. The formation of protein-SSG, however, emerges as a possible regulatory mechanism for the inhibition of microtubule assembly and induction of their disassembly.
Resumo:
The mechanisms responsible for anti-cancer drug (including Taxol) treatment failure have not been identified. In cell culture model systems, many β-tubulin, but very few α-tubulin, mutations have been associated with resistance to Taxol. To test what, if any, mutations in α-tubulin can cause resistance, we transfected a randomly mutagenized α-tubulin cDNA into Chinese hamster ovary (CHO) cells and isolated drug resistant cell lines. A total of 12 mutations were identified in this way and all of them were confirmed to confer Taxol resistance. Furthermore, all cells expressing mutant α-tubulin had less microtubule polymer. Some cells also had abnormal nuclei and enlarged cell bodies. The data indicate that α-tubulin mutations confer Taxol resistance by disrupting microtubule assembly, a mechanism consistent with a large number of previously described β-tubulin mutations. ^ Because α- and β-tubulin are almost identical in their three dimensional structure, we hypothesized that mutations discovered in one subunit, when introduced into the other, would produce similar effects on microtubule assembly and drug resistance. 9 α- and 2 β-tubulin mutations were tested. The results were complex. Some mutations produced similar changes in microtubule assembly and drug resistance irrespective of the subunit in which they were introduced, but others produced opposite effects. Still one mutation produced resistance when present in one subunit, yet had no effect when present on the other; and one mutation that produced Taxol resistance when present in α-tubulin, resulted in assembly-defective tubulin when it was present in β-tubulin. The results suggest that in most cases, the same amino acid modification in α- and β-tubulin affects the microtubule structure and assembly in a similar way. ^ Finally, we tested whether three β-tubulin mutations found in patient tumors could confer resistance to Taxol by recreating the mutations in a β-tubulin cDNA and transfecting it into CHO cells. We found that all three mutations conferred Taxol resistance, but to different extents. Again, microtubule assembly in the transfectants was disrupted, suggesting that mutations in β-tubulin are a potential problem in cancer therapeutics. ^
Resumo:
Receptor-mediated endocytosis is well known for its degradation and recycling trafficking. Recent evidence shows that these cell surface receptors translocate from cell surface to different cellular compartments, including the Golgi, mitochondria, endoplasmic reticulum (ER), and the nucleus to regulate physiological and pathological functions. Although some trafficking mechanisms have been resolved, the mechanism of intracellular trafficking from cell surface to the Golgi is not yet completed understood. Here we report a mechanism of Golgi translocation of EGFR in which EGF-induced EGFR travels to the Golgi via microtubule (MT)-dependent movement by interacting with dynein and fuses with the Golgi through syntaxin 6 (Syn6)-mediated membrane fusion. We also demonstrate that the Golgi translocation of EGFR is necessary for its consequent nuclear translocation and transcriptional activity. Interestingly, foreign protein such as bacterial cholera toxin, which is known to activate its pathological function through the Golgi/ER retrograde pathway, also utilizes the MT/Syn6 pathway. Thus, the MT, and syntaxin 6 mediated trafficking pathway from cell surface to the Golgi and ER defines a comprehensive retrograde trafficking route for both cellular and foreign molecules to travel from cell surface to the Golgi and the nucleus.