975 resultados para MALDI MS spectrometry
Resumo:
The effects of domestic cooking on proteins, organic compounds and Fe distribution in beans (Phaseolus vulgaris L.) were investigated. Sequential extraction with different extractant solutions (mixture of methanol and chloroform 1:2 v/v, water, 0.5 mol L-1 NaCl, 70% v/v ethanol and 0.5 mol L-1 NaOH) were used for extracting lipids, albumins, globulins, prolamins and glutelins, respectively. Iron determination by graphite furnace atomic absorption spectrometry (GF AAS), proteins by Bradford method and organic compounds by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) were carried out in this work. High concentration of albumins, globulins and glutelins were found in raw beans, while in the cooked beans, albumins and glutelins are main proteins types. The MALDI-TOF MS spectra of raw and cooked beans revealed that the domestic cooking altered the molecular weight of the organic compounds, since that in the cooked beans were found compounds between 2 and 3.5 kDa, which were not presented in the raw beans. Besides this, in cooked beans were also observed the presence of four compounds of high molecular weight (12-16 kDa), being that in the raw grains there is only one (ca. 15.2 kDa). In raw grains is possible to observe that Fe is mainly associated to albumins, globulins and glutelins. For cooked grains, Fe is associated to albumins and globulins.
Resumo:
To characterize proteomic changes found in Barrett's adenocarcinoma and its premalignant stages, the proteomic profiles of histologically defined precursor and invasive carcinoma lesions were analyzed by MALDI imaging MS. For a primary proteomic screening, a discovery cohort of 38 fresh frozen Barrett's adenocarcinoma patient tissue samples was used. The goal was to find proteins that might be used as markers for monitoring cancer development as well as for predicting regional lymph node metastasis and disease outcome. Using mass spectrometry for protein identification and validating the results by immunohistochemistry on an independent validation set, we could identify two of 60 differentially expressed m/z species between Barrett's adenocarcinoma and the precursor lesion: COX7A2 and S100-A10. Furthermore, among 22 m/z species that are differentially expressed in Barrett's adenocarcinoma cases with and without regional lymph node metastasis, one was identified as TAGLN2. In the validation set, we found a correlation of the expression levels of COX7A2 and TAGLN2 with a poor prognosis while S100-A10 was confirmed by multivariate analysis as a novel independent prognostic factor in Barrett's adenocarcinoma. Our results underscore the high potential of MALDI imaging for revealing new biologically significant molecular details from cancer tissues which might have potential for clinical application. This article is part of a Special Issue entitled: Translational Proteomics.
Resumo:
Species of the family Pasteurellaceae play an important role as primary or opportunistic animal pathogens. In veterinary diagnostic laboratories identification of this group of bacteria is mainly done by phenotypic assays while genetic identification based on housekeeping genes is mostly used for research and particularly important diagnostic samples. MALDI-TOF MS seems to represent a promising alternative to the currently practiced cumbersome, phenotypic diagnostics carried out in many veterinary diagnostic laboratories. We therefore assessed its application for animal associated members of the family Pasteurellaceae. The Bruker Biotyper 3.0 database was complemented with reference spectra of clinically relevant as well as commensal animal Pasteurellaceae species using generally five strains per species or subspecies and tested for its diagnostic potential with additional, well characterized field isolates. About 250 strains comprising 15 genera and more than 40 species and subspecies were included in the study, covering most representatives of the family. A high discrimination at the genus and species level was observed. Problematic discrimination was only observed with some closely related species and subspecies. MALDI-TOF MS was shown to represent a highly potent method for the diagnosis of this group of animal pathogens, combining speed, precision and low running costs.
Resumo:
We present the first analytical approach to demonstrate the in situ imaging of metabolites from formalin-fixed, paraffin-embedded (FFPE) human tissue samples. Using high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR MSI), we conducted a proof-of-principle experiment comparing metabolite measurements from FFPE and fresh frozen tissue sections, and found an overlap of 72% amongst 1700 m/z species. In particular, we observed conservation of biomedically relevant information at the metabolite level in FFPE tissues. In biomedical applications, we analysed tissues from 350 different cancer patients and were able to discriminate between normal and tumour tissues, and different tumours from the same organ, and found an independent prognostic factor for patient survival. This study demonstrates the ability to measure metabolites in FFPE tissues using MALDI-FT-ICR MSI, which can then be assigned to histology and clinical parameters. Our approach is a major technical, histochemical, and clinicopathological advance that highlights the potential for investigating diseases in archived FFPE tissues.
Resumo:
Sets of RNA ladders can be synthesized by transcription of a bacteriophage-encoded RNA polymerase using 3′-deoxynucleotides as chain terminators. These ladders can be used for sequencing of DNA. Using a nicked form of phage SP6 RNA polymerase in this study substantially enhanced yields of transcriptional sequencing ladders. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of chain-terminated RNA ladders allowed DNA sequence determination of up to 56 nt. It is also demonstrated that A→G and C→T variations in heterozygous and homozygous samples can be unambiguously identified by the mass spectrometric analysis. As a step towards single-tube sequencing reactions, α-thiotriphosphate nucleotide analogs were used to overcome problems caused by chain terminator-independent, premature termination and by the small mass difference between natural pyrimidine nucleotides.
Resumo:
The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying Streptococcus suis isolates obtained from pigs, wild animals, and humans was evaluated using a PCR-based identification assay as the gold standard. In addition, MALDI-TOF MS was compared with the commercial multi-tests Rapid ID 32 STREP system. From the 129 S. suis isolates included in the study and identified by the molecular method, only 31 isolates (24.03%) had score values ≥2.300 and 79 isolates (61.24%) gave score values between 2.299 and 2.000. After updating the currently available S. suis MALDI Biotyper database with the spectra of three additional clinical isolates of serotypes 2, 7, and 9, most isolates had statistically significant higher score values (mean score: 2.65) than those obtained using the original database (mean score: 2.182). Considering the results of the present study, we suggest using a less restrictive threshold score of ≥2.000 for reliable species identification of S. suis. According to this cut-off value, a total of 125 S. suis isolates (96.9%) were correctly identified using the updated database. These data indicate an excellent performance of MALDI-TOF MS for the identification of S. suis.
Resumo:
Corynebacterium species (spp.) are among the most frequently isolated pathogens associated with subclinical mastitis in dairy cows. However, simple, fast, and reliable methods for the identification of species of the genus Corynebacterium are not currently available. This study aimed to evaluate the usefulness of matrix-assisted laser desorption ionization/mass spectrometry (MALDI-TOF MS) for identifying Corynebacterium spp. isolated from the mammary glands of dairy cows. Corynebacterium spp. were isolated from milk samples via microbiological culture (n=180) and were analyzed by MALDI-TOF MS and 16S rRNA gene sequencing. Using MALDI-TOF MS methodology, 161 Corynebacterium spp. isolates (89.4%) were correctly identified at the species level, whereas 12 isolates (6.7%) were identified at the genus level. Most isolates that were identified at the species level with 16 S rRNA gene sequencing were identified as Corynebacterium bovis (n=156; 86.7%) were also identified as C. bovis with MALDI-TOF MS. Five Corynebacterium spp. isolates (2.8%) were not correctly identified at the species level with MALDI-TOF MS and 2 isolates (1.1%) were considered unidentified because despite having MALDI-TOF MS scores >2, only the genus level was correctly identified. Therefore, MALDI-TOF MS could serve as an alternative method for species-level diagnoses of bovine intramammary infections caused by Corynebacterium spp.
Resumo:
Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research.
Resumo:
In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO.
Resumo:
A simple method with a fast sample preparation procedure for total and inorganic mercury determinations in blood samples is proposed based on flow injection cold vapor inductively coupled plasma mass spectrometry (FI-CVICP-MS). Aliquots of whole blood (500 mL) are diluted 1 + 1 v/v with 10.0% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 3 h at room temperature and then further diluted 1 + 4 v/v with 2.0% v/v HCl. The inorganic Hg was released by online addition of L-cysteine and then reduced to elemental Hg by SnCl(2). On the other hand, total mercury was determined by on-line addition of KMnO(4) and then reduced to elemental Hg by NaBH(4). Samples were calibrated against matrix-matching. The method detection limit was found to be 0.80 mu g L(-1) and 0.08 mu g L(-1) for inorganic and total mercury, respectively. Sample throughput is 20 samples h(-1). The method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). For additional validation purposes, human whole blood samples were analyzed by the proposed method and by an established CV AAS method, with no statistical difference between the two techniques at 95% confidence level on applying the t-test.
Resumo:
Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied.
Resumo:
Thesis submitted to the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, for the degree of Doctor of Philosophy in Biochemistry
Resumo:
Since the last two decades mass spectrometry (MS) has been applied to analyse the chemical cellular components of microorganisms, providing rapid and discriminatory proteomic profiles for their species identification and, in some cases, subtyping. The application of MS for the microbial diagnosis is currently well-established. The remarkable reproducibility and objectivity of this method is based on the measurement of constantly expressed and highly abundant proteins, mainly important conservative ribosomal proteins, which are used as markers to generate a cellular fingerprint. Mass spectrometry based on matrix-assisted laser desorption ionization-time of flight (MALDI- TOF) technique has been an important tool for the microbial diagnostic. However, some technical limitation concerning both MALDI-TOF and its used protocols for sample preparation have fostered the research of new mass spectrometry systems (e.g. LC MS/MS). LC MS/MS is able to generate online mass spectra of specific ions with further online sequencing of these ions, which include both specific proteins and DNA fragments. In this work a set of data for yeasts and filamentous fungi diagnostic obtained through an international collaboration project involving partners from Argentina, Brazil, Chile and Portugal will be presented and discussed.
Resumo:
Fusarium verticillioides is considered one of the most important global sources of fumonisin contamination in food and feed. Corn is one of the main commodities produced in the Northeastern Region of Brazil. The present study investigated potential mycotoxigenic fungal strains belonging to the F. verticillioides species isolated from corn kernels in 3 different Regions of the Brazilian State of Pernambuco. A polyphasic approach including classical taxonomy, molecular biology, MALDI-TOF MS and MALDI-TOF MS/MS for the identification and characterisation of the F. verticillioides strains was used. Sixty F. verticillioides strains were isolated and successfully identified by classical morphology, proteomic profiles of MALDI-TOF MS, and by molecular biology using the species-specific primers VERT-1 and VERT-2. FUM1 gene was further detected for all the 60 F. verticillioides by using the primers VERTF-1 and VERTF-2 and through the amplification profiles of the ISSR regions using the primers (GTG)5 and (GACA)4. Results obtained from molecular analysis shown a low genetic variability among these isolates from the different geographical regions. All of the 60 F. verticillioides isolates assessed by MALDI-TOF MS/MS presented ion peaks with the molecular mass of the fumonisin B1 (721.83 g/mol) and B2 (705.83 g/mol)