944 resultados para Learning Capabilities


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Universities’ push toward the production of high quality research is not limited to academic staff and experienced researchers. In this environment of research rich agendas, Higher Degree Research (HDR) students are increasingly expected to engage in the publishing of good quality papers in high impact journals. IFN001: Advanced Information Research Skills (AIRS) is a credit bearing mandatory coursework requirement for Queensland University of Technology (QUT) doctorates. Since its inception in 1989, this unique blended learning program has provided the foundations for new researchers to produce original and innovative research. AIRS was redeveloped in 2012, and has now been evaluated with reference to the university’s strategic research priorities. Our research is the first comprehensive evaluation of the program from the learner perspective. We measured whether the program develops essential transferrable skills and graduate capabilities to ensure best practice in the areas of publishing and data management. In particular, we explored whether AIRS prepares students to be agile researchers with the skills to adapt to different research contexts both within and outside academia. The target group for our study consisted of HDR students and supervisors at QUT. Both quantitative and qualitative research methods were used for data collection. Gathering data was by survey and focus groups with qualitative responses analyzed using NVivo. The results of the survey show that 82% of students surveyed believe that AIRS assisted their research process and helped them learn skills they need as a researcher. The 18% of respondents who expressed reservation about the benefits of AIRS were also examined to determine the key areas of concern. These included trends related to the timing of the program early in the candidature and a belief among some students that their previous research experience was sufficient for postgraduate study. New insights have been gained into how to better support HDR learners in partnership with supervisors and how to enhance learning experiences of specific cohorts, including international students and mature learners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The international trend towards an increasingly standards-based approach to higher education and the resultant focus on the assurance of learning in tertiary programs have generated a strong emphasis on the assessment of outcomes across the higher education sector. In legal education, curriculum reform is highly prevalent internationally as a result of various reviews of legal education. As legal education focuses more on the attainment of a broader set of outcomes encompassing soft skills, capabilities and attributes, more authentic assessment will need to be developed appropriate to this new environment, meaning that modes of assessment with strong application in real-life settings should be preferred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new automatic generation controller (AGC) design approach, adopting reinforcement learning (RL) techniques, was recently pro- posed [1]. In this paper we demonstrate the design and performance of controllers based on this RL approach for automatic generation control of systems consisting of units having complex dynamics—the reheat type of thermal units. For such systems, we also assess the capabilities of RL approach in handling realistic system features such as network changes, parameter variations, generation rate constraint (GRC), and governor deadband.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This resource can also be used by professional staff who are seeking accreditation via the UK PSF for relevant aspects of their role, e.g. staff who support the use of technologies for learning and/or support the development of digital literacies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to explore the design of interactive computer learning environments. The particular learning domain selected was Newtonian dynamics. Newtonian dynamics was chosen because it is an important area of physics with which many students have difficulty and because controlling Newtonian motion takes advantage of the computer's graphics and interactive capabilities. The learning environment involved games which simulated the motion of a spaceship on a display screen. The purpose of the games was to focus the students' attention on various aspects of the implications of Newton's laws.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter presents and contrasts descriptions of two cases of online affective support provided to support students engaged in higher level learning tasks. The cases are set in different cultures, centre upon different intended learning outcomes, and follow different tutorial styles. One (Eastern) tutor acted as a “shepherd leader” in response to needs arising in the Confucian Heritage Culture as the teacher promoted critical thinking, according to the Western model. The other (Western) tutor provided Rogerian facilitation of reflective learning journals, kept by students seeking to develop personal and professional capabilities. In both styles, affective support features strongly. The cultural and pedagogical comparisons between the cases have proved useful to the writers. These distinctions together with the similarities between the two online styles emerge in the comparisons. Keywords: affective needs, asynchronous discussion, Confucian Heritage Culture, constructivism, critical thinking, facilitation, reflection, reflective learning journals, Rogerian, shepherd leadership, social-constructivist, student-centred, support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces ART-EMAP, a neural architecture that uses spatial and temporal evidence accumulation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and unsupervised learning and a medium-term memory process to accomplish stable pattern category recognition in a noisy input environment. The ART-EMAP system features (i) distributed pattern registration at a view category field; (ii) a decision criterion for mapping between view and object categories which can delay categorization of ambiguous objects and trigger an evidence accumulation process when faced with a low confidence prediction; (iii) a process that accumulates evidence at a medium-term memory (MTM) field; and (iv) an unsupervised learning algorithm to fine-tune performance after a limited initial period of supervised network training. ART-EMAP dynamics are illustrated with a benchmark simulation example. Applications include 3-D object recognition from a series of ambiguous 2-D views.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se propone un planteamiento teórico/conceptual para determinar si las relaciones interorganizativas e interpersonales de la netchain de las cooperativas agroalimentarias evolucionan hacia una learning netchain. Las propuestas del trabajo muestran que el mayor grado de asociacionismo y la mayor cooperación/colaboración vertical a lo largo de la cadena están positivamente relacionados con la posición horizontal de la empresa focal más cercana del consumidor final. Esto requiere una planificación y una resolución de problemas de manera conjunta, lo que está positivamente relacionado con el mayor flujo y diversidad de la información/conocimiento obtenido y diseminado a lo largo de la netchain. Al mismo tiempo se necesita desarrollar un contexto social en el que fluya la información/conocimiento y las nuevas ideas de manera informal y esto se logra con redes personales y, principalmente, profesionales y con redes internas y, principalmente, externas. Todo esto permitirá una mayor satisfacción de los socios de la cooperativa agroalimentaria y de sus distribuidores y una mayor intensidad en I+D, convirtiéndose la netchain de la cooperativa agroalimentaria, así, en una learning netchain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile malware has continued to grow at an alarming rate despite on-going mitigation efforts. This has been much more prevalent on Android due to being an open platform that is rapidly overtaking other competing platforms in the mobile smart devices market. Recently, a new generation of Android malware families has emerged with advanced evasion capabilities which make them much more difficult to detect using conventional methods. This paper proposes and investigates a parallel machine learning based classification approach for early detection of Android malware. Using real malware samples and benign applications, a composite classification model is developed from parallel combination of heterogeneous classifiers. The empirical evaluation of the model under different combination schemes demonstrates its efficacy and potential to improve detection accuracy. More importantly, by utilizing several classifiers with diverse characteristics, their strengths can be harnessed not only for enhanced Android malware detection but also quicker white box analysis by means of the more interpretable constituent classifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological learning refers to the learning processes involved in improving the productive capabilities of an enterprise, sector or economy to enable it to produce higher quality goods or services with increasing levels of efficiency. Approaches to the study of technological learning include case studies of particular countries, sectors and firms; measures of export sophistication; and composite indicators of innovation and competitiveness. The present review draws on these approaches to provide an overview of the policies and practices that have been successful in different regions (East-Asia and Latin America) ; contexts (import substitution and liberalization) ; sectors (pulp and paper, IT services, electronics and passenger cars); and firms (Embrear and Lenovo). While it is clear that there is strong complementarity between domestic technological capability and the ability to absorb foreign technology, there is no simple policy recipe which is appropriate for all times, industries or places. Technological learning builds on and is shaped by what is already known. It requires time, space and resources all of which are influenced by the wider domestic and international context. The current international context is challenging but countries and firms have to find ways of moving forward despite the limited strategy space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex collaboration in rapidly changing business environments create challenges for management capability in Utility Horizontal Supply Chains (UHSCs) involving the deploying and evolving of performance measures. The aim of the study is twofold. First, there is a need to explore how management capability can be developed and used to deploy and evolve Performance Measurement (PM), both across a UHSC and within its constituent organisations, drawing upon a theoretical nexus of Dynamic Capability (DC) theory and complementary Goal Theory. Second, to make a contribution to knowledge by empirically building theory using these constructs to show the management motivations and behaviours within PM-based DCs. The methodology uses an interpretive theory building, multiple case based approach (n=3) as part of a USHC. The data collection methods include, interviews (n=54), focus groups (n=10), document analysis and participant observation (reflective learning logs) over a five-year period giving longitudinal data. The empirical findings lead to the development of a conceptual framework showing that management capabilities in driving PM deployment and evolution can be represented as multilevel renewal and incremental Dynamic Capabilities, which can be further understood in terms of motivation and behaviour by Goal-Theoretic constructs. In addition three interrelated cross cutting themes of management capabilities in consensus building, goal setting and resource change were identified. These management capabilities require carefully planned development and nurturing within the UHSC. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bounding the tree-width of a Bayesian network can reduce the chance of overfitting, and allows exact inference to be performed efficiently. Several existing algorithms tackle the problem of learning bounded tree-width Bayesian networks by learning from k-trees as super-structures, but they do not scale to large domains and/or large tree-width. We propose a guided search algorithm to find k-trees with maximum Informative scores, which is a measure of quality for the k-tree in yielding good Bayesian networks. The algorithm achieves close to optimal performance compared to exact solutions in small domains, and can discover better networks than existing approximate methods can in large domains. It also provides an optimal elimination order of variables that guarantees small complexity for later runs of exact inference. Comparisons with well-known approaches in terms of learning and inference accuracy illustrate its capabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autistic adults with limited speech and additional learning disabilities are people whose perceptions and interactions with their environment are unique, but whose experiences are under-explored in design research. This PhD by Practice investigates how people with autism experience their home environment through a collaboration with the autism charity Kingwood Trust, which gave the designer extensive access to a community of autistic adults that it supports. The PhD reflects upon a neurotypical designer’s approach to working with autistic adults to investigate their relationship with the environment. It identifies and develops collaborative design tools for autistic adults, their support staff and family members to be involved. The PhD presents three design studies that explore a person’s interaction with three environmental contexts of the home i.e. garden, everyday objects and interiors. A strengths-based rather than a deficit-based approach is adopted which draws upon an autistic person’s sensory preferences, special interests and action capabilities, to unravel what discomfort and delight might mean for an autistic person; this approach is translated into three design solutions to enhance their experience at home. By working beyond the boundaries of a neurotypical culture, the PhD bridges the autistic and neurotypical worlds of experience and draws upon what the mainstream design field can learn from designing with autistic people with additional learning disabilities. It also provides insights into the subjective experiences of people who have very different ways of seeing, doing and being in the environment