998 resultados para Kappa opioid receptor
Resumo:
Obesity is a major challenge to human health worldwide. Little is known about the brain mechanisms that are associated with overeating and obesity in humans. In this project, multimodal neuroimaging techniques were utilized to study brain neurotransmission and anatomy in obesity. Bariatric surgery was used as an experimental method for assessing whether the possible differences between obese and non-obese individuals change following the weight loss. This could indicate whether obesity-related altered neurotransmission and cerebral atrophy are recoverable or whether they represent stable individual characteristics. Morbidly obese subjects (BMI ≥ 35 kg/m2) and non-obese control subjects (mean BMI 23 kg/m2) were studied with positron emission tomography (PET) and magnetic resonance imaging (MRI). In the PET studies, focus was put on dopaminergic and opioidergic systems, both of which are crucial in the reward processing. Brain dopamine D2 receptor (D2R) availability was measured using [11C]raclopride and µ-opioid receptor (MOR) availability using [11C]carfentanil. In the MRI studies, voxel-based morphometry (VBM) of T1-weighted MRI images was used, coupled with diffusion tensor imaging (DTI). Obese subjects underwent bariatric surgery as their standard clinical treatment during the study. Preoperatively, morbidly obese subjects had significantly lower MOR availability but unaltered D2R availability in several brain regions involved in reward processing, including striatum, insula, and thalamus. Moreover, obesity disrupted the interaction between the MOR and D2R systems in ventral striatum. Bariatric surgery and concomitant weight loss normalized MOR availability in the obese, but did not influence D2R availability in any brain region. Morbidly obese subjects had also significantly lower grey and white matter densities globally in the brain, but more focal changes were located in the areas associated with inhibitory control, reward processing, and appetite. DTI revealed also signs of axonal damage in the obese in corticospinal tracts and occipito-frontal fascicles. Surgery-induced weight loss resulted in global recovery of white matter density as well as more focal recovery of grey matter density among obese subjects. Altogether these results show that the endogenous opioid system is fundamentally linked to obesity. Lowered MOR availability is likely a consequence of obesity and may mediate maintenance of excessive energy uptake. In addition, obesity has adverse effects on brain structure. Bariatric surgery however reverses MOR dysfunction and recovers cerebral atrophy. Understanding the opioidergic contribution to overeating and obesity is critical for developing new psychological or pharmacological treatments for obesity. The actual molecular mechanisms behind the positive change in structure and neurotransmitter function still remain unclear and should be addressed in the future research.
Resumo:
Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 days after spinal nerve ligation or sham surgery, and the effects of the FAAHinhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 _g in 50 _l) significantly ( p _ 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1 ) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30_g in50_l) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of shamoperated rats. Intraplantar URB597 (25 _g in 50 _l) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 _g in 50 _l) significantly ( p_0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in shamoperated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.
Resumo:
Tetracarpidium conophorum (TC) (Euphorbiaceae) is a perennial woody climbing shrub in low bush forest of some parts of West Africa and used among the natives for relief of ailments accompanying pain and inflammation. In this study, the analgesic and anti-inflammatory effects of the methanolic extract (METC) and fractions (ethyl acetate, F1 and n-hexane, F2) of Tetracarpidium conophorum leaf were evaluated in rat and mice. The analgesic activity was evaluated using acetic acid-induced writhing, formalin-induced paw licking and hot plate test models. Carrageenan-induced paw oedema was used to assess anti-inflammatory activity in rats. The mechanism of action of (TC) was explored by the use of naloxone, a non-selective opioid receptor blocker. The highest analgesic effect was observed in F2 extract at 57.21% inhibition and was further studied on various analgesic and anti-inflammatory models in graded doses. F2 significantly inhibited the late phase of formalin-induced paw licking and prolong hot plate latency at 55±1°C. The n-hexane fraction also significantly inhibited carrageenan-induced paw oedema in rats at 100 and 200mg/kg doses significantly (p< 0.001) and reduced paw licking response by 85.08% compared with control. Naloxone, an opioid receptor antagonist, did not significantly affect the changes observed with n-hexane fraction, thus ruling out the possibility of the involvement of opioid receptors in the analgesic actions of Tetracarpidium conophorum. Phytochemical screening showed that the leaf extracts contain alkaloids, tannins, saponins and cardenolides. The investigations showed that Tetracarpidium conophorum possesses significant anti-nociceptive and anti-inflammatory activities that should be explored.
Resumo:
ABSTRACT Background:Strong opioids are the treatment of choice for moderate to severe cancer-related pain. Fentanyl is a synthetic opioid with high affinity for the μ-opioid receptor and is 75–100 times more potent than morphine. Fentanyl is metabolised rapidly, particularly in the liver and only 10% is excreted as intact substance. The use of CYP3A4 inhibitors and inducers, impaired liver function, and heating of the patch potentially influence fentanyl pharmacokinetics in a clinically relevant way. The influence of BMI and gender on fentanyl pharmacokinetics is questionable. Pharmacogenetic, may influence fentanyl pharmacokinetic and other factors have been studied but did not show significant and clinically relevant effects on fentanyl pharmacokinetic. Method: This is a biological interventional prospective, single-center study in 49 patients with solid or haematological neoplasm treated with transdermal fentanyl undergoing 5-step pharmacokinetic and pharmacogenetic withdrawals from administration of the fentanyl patch. Objective:to evaluate the pharmacokinetic and pharmacogenetic of transdermal fentanyl in relation to the patient's clinical response on pain Results: Sex was the only parameter with evidence of different distribution between responders and non-responders , showing a major chance for male to be responders than females. We found some correlation with pharmacokinetic parameters and sex, regarding adverse events and NRS correlation with BPI. NAT2 and UGT2B7 polymorphisms are associated with AUC and Cmax kinetics parameters, NAT2 and CYP4F2 showed some evidence of association with the fentanyl dosage and CYP2B6 polymorphism seemed to be correlate with side effects. Conclusion: Small sample size of study population make difficult do find some significant correlation between pharmacogenetic, pharmacokinetic and clinical response. Larger studies are needed to increase knowledge about response to opioid treatment in cancer patients to better individualized pain treatment.
Resumo:
This study assessed the effect of the agonist 15d-PGJ(2) administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral and the anti-inflammatory potential of this prostaglandin on TMJ. It was observed that 15-deoxy-(Delta 12,14)-prostaglandin J(2) (15d-PGJ(2)) significantly reduced formalin-induced nociceptive behavior in a dose dependent manner, however injection of 15d-PGJ(2) into the contralateral TMJ failed to reduce such effects. This antinociceptive effect is dependent on peroxisome proliferator-activated receptors-gamma (PPAR-gamma) since pre-treatment with GW9662 (PPAR-gamma receptor antagonist) blocked the antinociceptive effect of 15d-PGJ(2) in the TMJ. In addition, the antinociceptive effect of 15d-PGJ(2) was also blocked by naloxone suggesting the involvement of peripheral opioids in the process. Confirming this hypothesis pre-treatment with kappa, delta, but not mu receptor antagonists significantly reduced the antinociceptive effect of 15d-PGJ(2) in the TMJ. Similarly to opioid agonists, the 15d-PGJ(2) antinociceptive action depends on the nitric oxide (NO)/guanilate cyclase (cGMP)/ATP-sensitive potassium channel blocker(K(ATP)(+)) channel pathway since it was prevented by the pre-treatment with the inhibitors of nitric oxide synthase (NOS; aminoguanidine), cGMP (ODQ), or the K(ATP)(+) (glibenclamide). In addition, 15d-PGJ(2) (100 ng/TMJ) inhibits 5-HT-induced TMJ hypernociception. Besides, TMJ treated with 15d-PGJ(2) showed lower vascular permeability, assessed by Evan`s Blue extravasation, and also lower neutrophil migration induced by carrageenan administration. Taken together, these results demonstrate that 15d-PGJ(2) has a potential peripheral antinociceptive and anti-inflammatory effect in the TMJ via PPAR-gamma activation. The results also suggest that 15d-PGJ(2) induced-peripheral antinociceptive response in the TMJ is mediated by kappa/delta opioid receptors by the activation of the intracellular L-arginine/NO/cGMP/K(ATP)(+) channel pathway. The pharmacological properties of the peripheral administration of 15d-PGJ(2) highlight the potential use of this PPAR-gamma agonist on TMJ inflammatory pain conditions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) are expressed in apical periodontitis, suggesting a role for these molecules during lesion development. However, the profiles of RANKL/OPG expression in periapical lesions remain unknown. In this study we investigated the patterns of RANKL and OPG mRNA expression by real-time polymerase chain reaction in human periapical granulomas (N = 44) and compared them with sites presenting characteristic bone resorbing activity: healthy (n = 14) and orthodontically stretched and compressed periodontal ligament (n = 26), healthy gingiva (n = 24), chronic gingivitis (n = 32), and chronic periodontitis (n = 34) samples. Both RANKL and OPG mRNA expression was higher in periapical granulomas when compared with healthy periodontal ligament. Distinct patterns of RANKL and OPG expression ratio were found in the granulomas and in different physiologic and pathologic conditions, with characteristic bone resorption activity potentially being indicative of the stable or progressive nature of the lesions. Lesions with radiographic image smaller than 5 mm showed higher RANKL/OPG expression than images greater than 5 mm. Periapical granulomas presented heterogeneous patterns of RANKL and OPG expression, ranging from samples with RANKL/OPG ratio similar to that seen in sites with minimal or absent bone resorption to samples with RANKL/OPG expression pattern comparable with active bone resorption sites.
Resumo:
skeletal disease. Bone remodeling is initiated by osteoclastic resorption followed by osteoblastic formation of new bone. Receptor activator of nuclear factor KB ligand (RANKL) is a newly described regulator of osteoclast formation and function, the activity of which appears to be a balance between interaction with its receptor RANK and with an antagonist binding protein osteoprotegerin (OPG). Therefore, we have examined the relationship between the expression of RANKL, RANK, and OPG and indices of bone structure and turnover in human cancellous bone from the proximal femur. Bone samples were obtained from individuals with osteoarthritis (OA) at joint replacement surgery and from autopsy controls. Histomorphometric analysis of these samples showed that eroded surface (ES/BS) and osteoid surface (OS/BS) were positively associated in both control (p < 0.001) and OA (p < 0.02), indicating that the processes of bone resorption and bone formation remain coupled in OA, as they are in controls. RANKL, OPG, and RANK messenger RNA, (mRNA) were abundant in human cancellous bone, with significant differences between control and OA individuals. In coplotting the molecular and histomorphometric data, strong associations were found between the ratio of RANKL/OPG mRNA and the indices of bone turnover (RANKL/OPG vs. ES/BS: r = 0.93, p < 0.001; RANKL/OPG vs. OS/BS: r = 0.80, p < 0.001). These relationships were not evident in trabecular bone from severe OA, suggesting that bone turnover may be regulated differently in this disease. We propose that the effective concentration of RANKL is related causally to bone turnover.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.
Resumo:
The signaling pathway controlling antigen receptor-induced regulation of the transcription factor NF-kappa B plays a key role in lymphocyte activation and development and the generation of lymphomas. Work of the past decade has led to dramatic progress in the identification and characterization of new players in the pathway. Moreover, novel enzymatic activities relevant for this pathway have been discovered, which represent interesting drug targets for immuno-suppression or lymphoma treatment. Here, we summarize these findings and give an outlook on interesting open issues that need to be addressed in the future.
Resumo:
Ligation of antigen receptors (TCR, BCR) on T and B lymphocytes leads to the activation of new transcriptional programs and cell cycle progression. Antigen receptor-mediated activation of NF-kappa B, required for proliferation of B and T cells, is disrupted in T cells lacking PKC theta and in B and T cells lacking Bcl10, a caspase recruitment domain (CARD)-containing adaptor protein. CARMA1 (also called CARD11 and Bimp3), the only lymphocyte-specific member in a family of membrane-associated guanylate kinase (MAGUK) scaffolding proteins that interact with Bcl10 by way of CARD-CARD interactions, is required for TCR-induced NF-kappa B activation in Jurkat T lymphoma cells. Here we show that T cells from mice lacking CARMA1 expression were defective in recruitment of Bcl10 to clustered TCR complexes and lipid rafts, in activation of NF-kappa B, and in induction of IL-2 production. Development of CD5(+) peritoneal B cells was disrupted in these mice, as was B cell proliferation in response to both BCR and CD40 ligation. Serum immunoglobulin levels were also markedly reduced in the mutant mice. Together, these results show that CARMA1 has a central role in antigen receptor signaling that results in activation and proliferation of both B and T lymphocytes.
Resumo:
PURPOSE OF REVIEW: The review aims at comprehensively discussing our current knowledge on bone metastases incidence in non-small cell lung cancer (NSCLC), their related complications as well as clinical impact in patients suffering from advanced disease. RECENT FINDINGS: After evoking the use of zoledronic acid as the established standard of care until recently, the new class of drugs available to prevent skeletal related events and targeting receptor activator of nuclear factor-kappa B (RANK) will be emphasized, reporting on denosumab clinical trials, a RANK-ligand (RANKL) targeting monoclonal antibody. Biological hypothesis regarding their mechanisms of action as well a potential direct impact on tumor cells are described according to the most recent laboratory as well as hypothesis-generating clinical data. SUMMARY: Targeting the RANK pathway is an efficient way to prevent complications of bone metastases in NSCLC. Interesting additional direct effects on tumor biology and evolution are being analyzed and prospectively assessed in clinical trials.
Resumo:
Cytokines (IL-6, IL-10, and TNF-alpha) are increased after exhaustive exercise in the retroperitoneal adipose tissue (RPAT) and mesenteric adipose tissue (MEAT). An exhaustive acute exercise protocol induces inflammation in adipose tissue that lasts 6 h after the exercise has ended. It is well-established that this protocol increases circulating plasma levels of non-esterified fatty acids (NEFAs) and lipopolysaccharides (LPS), compounds that are important in stimulating signaling via toll like receptor-4 (TLR-4) in different type cells. In the present study, we investigated the regulation of TLR-4 and DNA-binding of nuclear factor-kappa Bp65 (NF-kappa Bp65) in different depots of adipose tissue in rats after exhaustive exercise. Rats were killed by decapitation immediately (E0 group, n = 6), 2 (E2 group, n = 6), and 6 h (E6 group, n = 6) after the exhaustive exercise, which consisted of running on a treadmill (approximately 70% V(O2max)) for 50 min and then running at an elevated rate that increased at 1 m/min, until exhaustion. The control group (C group, n = 6) was not subjected to exercise. In RPAT, TLR-4, MYD-88, and IkB alpha increased in the E2 group after exercise. MYD-88 and TRAF6 remained increased in the E6 group in comparison with the control group. DNA-binding of NF-kappa Bp65 was not altered. In MEAT, TLR-4, MYD-88, TRAF6, and DNA-binding of NF-kappa Bp65 were increased only in the E6 group. In conclusion, we have shown that increases in pro-inflammatory cytokines in adipose tissue pads after exhaustive exercise may be mediated via TLR-4 signaling, leading to increases in NF-kappa Bp65 binding to DNA in MEAT. J. Cell. Physiol. 226: 1604-1607, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background and Objective: Lipopolysaccharide from gram-negative bacteria is one of the microbial-associated molecular patterns that initiate the immune/inflammatory response, leading to the tissue destruction observed in periodontitis. The aim of this study was to evaluate the role of the p38 mitogen-activated protein kinase (MAPK) signaling pathway in lipopolysaccharide-induced receptor activator of nuclear factor-kappa B ligand (RANKL) expression by murine periodontal ligament cells.Material and Methods: Expression of RANKL and osteoprotegerin mRNA was studied by reverse transcription-polymerase chain reaction upon stimulation with lipopolysaccharide from Escherichia coli and Aggregatibacter actinomycetemcomitans. The biochemical inhibitor SB203580 was used to evaluate the contribution of the p38 MAPK signaling pathway to lipopolysaccharide-induced RANKL and osteoprotegerin expression. Stable cell lines expressing dominant-negative forms of MAPK kinase (MKK)-3 and MKK6 were generated to confirm the role of the p38 MAPK pathway. An osteoclastogenesis assay using a coculture model of the murine monocytic cell line RAW 264.7 was used to determine if osteoclast differentiation induced by lipopolysaccharide-stimulated periodontal ligament was correlated with RANKL expression.Results: Inhibiting p38 MAPK prior to lipopolysaccharide stimulation resulted in a significant decrease of RANKL mRNA expression. Osteoprotegerin mRNA expression was not affected by lipopolysaccharide or p38 MAPK. Lipopolysaccharide-stimulated periodontal ligament cells increased osteoclast differentiation, an effect that was completely blocked by osteoprotegerin and significantly decreased by inhibition of MKK3 and MKK6, upstream activators of p38 MAPK. Conditioned medium from murine periodontal ligament cultures did not increase osteoclast differentiation, indicating that periodontal ligament cells produced membrane-bound RANKL.Conclusion: Lipopolysaccharide resulted in a significant increase of RANKL in periodontal ligament cells. The p38 MAPK pathway is required for lipopolysaccharide-induced membrane-bound RANKL expression in these cells.
Resumo:
Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 mu M arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 mu M AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-kappa B and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (similar to 2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-kappa B at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-kappa B and SREBP-1 transcriptional regulation. Journal of Molecular Endocrinology (2012) 49, 97-106
Resumo:
The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa beta signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa beta signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria.