Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa beta and toll-like receptor pathways


Autoria(s): Liu, Saixi; Shi, Wei; Guo, Cheng; Zhao, Xinguo; Han, Yu; Peng, Chao; Chai, Xueliang; Liu, Guangxu
Data(s)

24/06/2016

Resumo

The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa beta signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa beta signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria.

Formato

text/tab-separated-values, 1503 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.861971

doi:10.1594/PANGAEA.861971

Idioma(s)

en

Publicador

PANGAEA

Relação

Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloise (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Liu, Saixi; Shi, Wei; Guo, Cheng; Zhao, Xinguo; Han, Yu; Peng, Chao; Chai, Xueliang; Liu, Guangxu (2016): Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa beta and toll-like receptor pathways. Fish & Shellfish Immunology, 54, 322-327, doi:10.1016/j.fsi.2016.04.030

Palavras-Chave #Alkalinity, total; Alkalinity, total, standard error; Aragonite saturation state; Aragonite saturation state, standard error; Bicarbonate ion; Calcite saturation state; Calcite saturation state, standard error; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Date; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gene name; Haemocyte count; Haemocyte count, standard error; Height; Height, standard error; mRNA gene expression, relative; mRNA gene expression, relative, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Percentage; Percentage, standard error; pH; pH, standard error; Phagocytosis rate; Phagocytosis rate, standard error; Potentiometric; Potentiometric titration; Registration number of species; Salinity; Salinity, standard error; Species; Temperature, water; Temperature, water, standard error; Tissues; Treatment; Type; Uniform resource locator/link to reference
Tipo

Dataset