923 resultados para Glutamatergic Pathway


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The baker s yeast Saccharomyces cerevisiae has a long tradition in alcohol production from D-glucose of e.g. starch. However, without genetic modifications it is unable to utilise the 5-carbon sugars D-xylose and L arabinose present in plant biomass. In this study, one key metabolic step of the catabolic D-xylose pathway in recombinant D-xylose-utilising S. cerevisiae strains was studied. This step, carried out by xylulokinase (XK), was shown to be rate-limiting, because overexpression of the xylulokinase-encoding gene XKS1 increased both the specific ethanol production rate and the yield from D xylose. In addition, less of the unwanted side product xylitol was produced. Recombinant D-xylose-utilizing S. cerevisiae strains have been constructed by expressing the genes coding for the first two enzymes of the pathway, D-xylose reductase (XR) and xylitol dehydrogenase (XDH) from the D-xylose-utilising yeast Pichia stipitis. In this study, the ability of endogenous genes of S. cerevisiae to enable D-xylose utilisation was evaluated. Overexpression of the GRE3 gene coding for an unspecific aldose reductase and the ScXYL2 gene coding for a xylitol dehydrogenase homologue enabled growth on D-xylose in aerobic conditions. However, the strain with GRE3 and ScXYL2 had a lower growth rate and accumulated more xylitol compared to the strain with the corresponding enzymes from P. stipitis. Use of the strictly NADPH-dependent Gre3p instead of the P. stipitis XR able to utilise both NADH and NADPH leads to a more severe redox imbalance. In a S. cerevisiae strain not engineered for D-xylose utilisation the presence of D-xylose increased xylitol dehydrogenase activity and the expression of the genes SOR1 or SOR2 coding for sorbitol dehydrogenase. Thus, D-xylose utilisation by S. cerevisiae with activities encoded by ScXYL2 or possibly SOR1 or SOR2, and GRE3 is feasible, but requires efficient redox balance engineering. Compared to D-xylose, D-glucose is a cheap and readily available substrate and thus an attractive alternative for xylitol manufacture. In this study, the pentose phosphate pathway (PPP) of S. cerevisiae was engineered for production of xylitol from D-glucose. Xylitol was formed from D-xylulose 5-phosphate in strains lacking transketolase activity and expressing the gene coding for XDH from P. stipitis. In addition to xylitol, ribitol, D-ribose and D-ribulose were also formed. Deletion of the xylulokinase-encoding gene increased xylitol production, whereas the expression of DOG1 coding for sugar phosphate phosphatase increased ribitol, D-ribose and D-ribulose production. Strains lacking phosphoglucose isomerase (Pgi1p) activity were shown to produce 5 carbon compounds through PPP when DOG1 was overexpressed. Expression of genes encoding glyceraldehyde 3-phosphate dehydrogenase of Bacillus subtilis, GapB, or NAD-dependent glutamate dehydrogenase Gdh2p of S. cerevisiae, altered the cellular redox balance and enhanced growth of pgi1 strains on D glucose, but co-expression with DOG1 reduced growth on higher D-glucose concentrations. Strains lacking both transketolase and phosphoglucose isomerase activities tolerated only low D-glucose concentrations, but the yield of 5-carbon sugars and sugar alcohols on D-glucose was about 50% (w/w).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of drug addiction include compulsive drug use despite negative consequences and re-occurring relapses, returns to drug use after a period of abstinence. Therefore, relapse prevention is one of the major challenges for the treatment of drug addiction. There are three main factors capable of inducing craving for drugs and triggering relapse long after cessation of drug use and dissipation of physical withdrawal signs: stress, re-exposure to the drug, and environmental stimuli (cues) that have been previously associated with drug use. The neurotransmitters dopamine and glutamate have been implicated in the modulation of drug-seeking behavior. The aim of this project was to examine the role of glutamatergic neurotransmission in relapse triggered by conditioned drug-associated stimuli. The focus was on clarifying whether relapse to drug seeking can be attenuated by blockade of glutamate receptors. In addition, as the nucleus accumbens has been proposed to participate in the modulation of drug-seeking behavior, the effects of glutamate receptor blockade in this brain structure on cue-induced relapse were investigated. The studies employed animals models in which rats were trained to press a lever in a test cage to obtain alcohol or intravenous cocaine. Drug availability was paired with distinct olfactory, auditory, or visual stimuli. This phase was followed by extinction training, during which lever presses did not result in the presentation of the drug or the drug-associated stimuli. Extinction training led to a gradual decrease in the number of lever presses during test sessions. Relapse was triggered by presenting the rats with the drug-associated stimuli in the absence of alcohol or cocaine. The drug-associated stimuli were alone capable of inducing resumption of lever pressing and maintaining this behavior during repeated testing. The number of lever presses during a session represented the intensity of drug-seeking and relapse behavior. The results suggest that glutamatergic neurotransmission is involved in the modulation of drug-seeking behavior. Both alcohol and cocaine relapse were attenuated by systemic pretreatment with glutamate receptor antagonists. However, differences were found in the ability of ionotropic AMPA/kainate and NMDA receptor antagonists to regulate drug-seeking behavior. The AMPA/kainate antagonists CNQX and NBQX, and L-701,324, an antagonist with affinity for the glycine site of the NMDA receptor, attenuated cue-induced drug seeking, whereas the competitive NMDA antagonist CGP39551 and the NMDA channel blocker MK-801 were without effect. MPEP, an antagonist at metabotropic mGlu5 glutamate receptors, also decreased drug seeking, but its administration was found to lead to conditioned suppression of behavior during subsequent treatment sessions, suggesting that MPEP may have undesirable side effects. The mGluR2/3 agonist LY379268 and the mGluR8 agonist (S)-3,4-DCPG decreased both cue-induced relapse to alcohol drinking and alcohol consumption. Control experiments showed however that administration of the agonists was accompanied by motor suppression limiting their usefulness. Administration of the AMPA/kainate antagonist CNQX, the NMDA antagonist D-AP5, and the mGluR5 antagonist MPEP into the nucleus accumbens resulted also in a decrease in drug-seeking behavior, suggesting that the nucleus accumbens is at least one of the anatomical sites regulating drug seeking and mediating the effects of glutamate receptor antagonists on this behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pectin is a natural polymer consisting mainly of D-galacturonic acid monomers. Microorganisms living on decaying plant material can use D-galacturonic acid for growth. Although bacterial pathways for D-galacturonate catabolism had been described previously, no eukaryotic pathway for D-galacturonate catabolism was known at the beginning of this work. The aim of this work was to identify such a pathway. In this thesis the pathway for D-galacturonate catabolism was identified in the filamentous fungus Trichoderma reesei. The pathway consisted of four enzymes: NADPH-dependent D-galacturonate reductase (GAR1), L-galactonate dehydratase (LGD1), L-threo-3-deoxy-hexulosonate aldolase (LGA1) and NADPH-dependent glyceraldehyde reductase (GLD1). In this pathway D-galacturonate was converted to pyruvate and glycerol via L-galactonate, L-threo-3-deoxy-hexulosonate and L-glyceraldehyde. The enzyme activities of GAR1, LGD1 and LGA1 were present in crude mycelial extract only when T. reesei was grown on D-galacturonate. The activity of GLD1 was equally present on all the tested carbon sources. The corresponding genes were identified either by purifying and sequencing the enzyme or by expressing genes with homology to other similar enzymes in a heterologous host and testing the activities. The new genes that were identified were expressed in Saccharomyces cerevisiae and resulted in active enzymes. The GAR1, LGA1 and GLD1 were also produced in S. cerevisiae as active enzymes with a polyhistidine-tag, and purified and characterised. GAR1 and LGA1 catalysed reversible reactions, whereas only the forward reactions were observed for LGD1 and GLD1. When gar1, lgd1 or lga1 was deleted in T. reesei the deletion strain was unable to grow with D-galacturonate as the only carbon source, demonstrating that all the corresponding enzymes were essential for D-galacturonate catabolism and that no alternative D-galacturonate pathway exists in T. reesei. A challenge for biotechnology is to convert cheap raw materials to useful and more valuable products. Filamentous fungi are especially useful for the conversion of pectin, since they are efficient producers of pectinases. Identification of the fungal D-galacturonate pathway is of fundamental importance for the utilisation of pectin and its conversion to useful products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-stranded RNA and associated proteins are known to regulate the gene expression of most eukaryotic organisms. These regulation pathways have different components, outcomes and distinct nomenclature depending on the model system, and often they are referred to collectively as RNA silencing. In many cases, RNA-dependent RNA polymerases (RdRPs) are found to be involved in the RNA silencing, but their targets, activities, interaction partners and reaction products remain enigmatic. In the filamentous fungus Neurospora crassa, the RdRP QDE-1 is critical for silencing of transgenes a phenomenon known as quelling. In this thesis the structure, biochemical activities and biological functions of QDE-1 were extensively studied. This dimeric RdRP was shown to possess five distinct catalytic in vitro activities that could be dissected by mutagenesis and by altering reaction conditions. The biochemical characterization implied that QDE-1 is actually an active DNA-dependent RNA polymerase that has additional RdRP activity. It also provided a structural explanation for the dimerization and suggested a biological framework for the functions of QDE-1 in vivo. (I) QDE-1 was also studied in a broader context along with the other components of the quelling pathway. It was shown that DNA damage in Neurospora causes a dramatic increase in the expression level of the Argonaute protein QDE-2 as well as the synthesis of a novel class of small RNAs known as qiRNAs. The accumulation of qiRNAs was shown to be dependent on several quelling components, and particularly to be derived from an aberrant ssRNA (aRNA) molecule that is synthesized by QDE-1 in the nucleus. The genomic distribution of qiRNA targets was analyzed and the possible biological significance of qiRNAs was studied. Importantly, qiRNAs are the first class of small RNAs that are induced by DNA damage. (II) After establishing that QDE-1 is a multifunctional RNA polymerase with several activities, template specificities and subcellular locations, the focus was turned onto its interaction partners. It had been previously known that QDE-1 associates with Replication Protein A (RPA), but the RecQ helicase QDE-3 was now shown to regulate this interaction. RPA was also observed to promote QDE-1 dependent dsRNA synthesis in vitro. By characterizing the interplay between QDE-1, QDE-3 and RPA, a working model of quelling and qiRNA pathways in Neurospora was presented. (III) This work sheds light on the complexity of the various RNA silencing pathways of a fungal model system. It shows how an RdRP can regulate gene expression on many levels, and suggests novel lines of research in other eukaryotic organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have systematically analysed the ultra structure of the early secretory pathway in the Trichoderma reesei hyphae in the wild-type QM6a, cellulase overexpressing Rut-C30 strain and a Rut-C30 transformant BV47 overexpressing a recombinant BiP1-VenusYFP fusion protein with an endoplasmic reticulum (ER) retention signal. The hyphae were studied after 24h of growth using transmission electron microscopy, confocal microscopy and quantitative stereological techniques. All three strains exhibited different spatial organisation of the ER at 24h in both a cellulase-inducing medium and a minimal medium containing glycerol as a carbon source (non-cellulase-inducing medium). The wild-type displayed a number of ER subdomains including parallel tubular/cisternal ER, ER whorls, ER-isolation membrane complexes with abundant autophagy vacuoles and dense bodies. Rut-C30 and its transformant BV47 overexpressing the BiP1-VenusYFP fusion protein also contained parallel tubular/cisternal ER, but no ER whorls; also, there were very few autophagy vacuoles and an increasing amount of punctate bodies where particularly the recombinant BiP1-VenusYFPfusion protein was localised. The early presence of distinct strain-specific features such as the dominance of ER whorls in the wild type and tub/cis ER in Rut-C30 suggests that these are inherent traits and not solely a result of cellular response mechanisms by the high secreting mutant to protein overload.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we identified a novel asthma susceptibility gene, NPSR1 (neuropeptide S receptor 1) on chromosome 7p14.3 by the positional cloning strategy. An earlier significant linkage mapping result among Finnish Kainuu asthma families was confirmed in two independent cohorts: in asthma families from Quebec, Canada and in allergy families from North Karelia, Finland. The linkage region was narrowed down to a 133-kb segment by a hierarchial genotyping method. The observed 77-kb haplotype block showed 7 haplotypes and a similar risk and nonrisk pattern in all three populations studied. All seven haplotypes occur in all three populations at frequences > 2%. Significant elevated relative risks were detected for elevated total IgE (immunoglobulin E) or asthma. Risk effects of the gene variants varied from 1.4 to 2.5. NPSR1 belongs to the G protein-coupled receptor (GPCR) family with a topology of seven transmembrane domains. NPSR1 has 9 exons, with the two main transcripts, A and B, encoding proteins of 371 and 377 amino acids, respectively. We detected a low but ubiquitous expression level of NPSR1-B in various tissues and endogenous cell lines while NPSR1-A has a more restricted expression pattern. Both isoforms were expressed in the lung epithelium. We observed aberrant expression levels of NPSR1-B in smooth muscle in asthmatic bronchi as compared to healthy. In an experimental mouse model, the induced lung inflammation resulted in elevated Npsr1 levels. Furthermore, we demonstrated that the activation of NPSR1 with its endogenous agonist, neuropeptide S (NPS), resulted in a significant inhibition of the growth of NPSR1-A overexpressing stable cell lines (NPSR1-A cells). To determine which target genes were regulated by the NPS-NPSR1 pathway, NPSR1-A cells were stimulated with NPS, and differentially expressed genes were identified using the Affymetrix HGU133Plus2 GeneChip. A total of 104 genes were found significantly up-regulated and 42 down-regulated 6 h after NPS administration. The up-regulated genes included many neuronal genes and some putative susceptibility genes for respiratory disorders. By Gene Ontology enrichment analysis, the biological process terms, cell proliferation, morphogenesis and immune response were among the most altered. The expression of four up-regulated genes, matrix metallopeptidase 10 (MMP10), INHBA (activin A), interleukin 8 (IL8) and EPH receptor A2 (EPHA2), were verified and confirmed by quantitative reverse-transcriptase-PCR. In conclusion, we identified a novel asthma susceptibility gene, NPSR1, on chromosome 7p14.3. NPS-NPSR1 represents a novel pathway that regulates cell proliferation and immune responses, and thus may have functional relevance in the pathogenesis of asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a complex neurological disorder with a well-documented genetic basis. Migraine is a product of allelic variation in genes of neurological, vascular and hormonal origin interacting with environmental triggers. Presentation can include attacks of head pain with symptoms of nausea, emesis, photophobia, phonophobia, and occasionally, visual sensory disturbances, known as aura. Migraine pain is difficult to ignore, associated with a deep sense of malaise and manifests as a throbbing, pulsatile headache, localized to one side of the head that intensifies with physical activity and that can last from 4-72 hours. Migraine is diagnosed according to criteria developed by the International Headache Society (IHS) and is subdivided into two main types based on the occurrence of aura symptoms that may be present in the early stages of the headache: migraine with aura (MA) and migraine without aura (MO). The majority (about 70%) of migraineurs are diagnosed with the MO subtype whilst the remaining 30% experience MA accompanied by neurological symptoms that manifest as fully reversible, visual, sensory and/or dysphasic speech disturbances in conjunction with their headache. Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) and over-excitation of glutamate receptors is regarded as a contributing factor, through various mechanisms, to the pathology of migraine. In this chapter we present an overview of the pathophysiology and co-morbidity of migraine with other psychiatric disorders and discuss the role of the glutamatergic system in migraine, its molecular components as potential drug targets, in addition to the current treatments and progress of modulators of glutamatergic signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the backbone chemical shift assignments of the acyl-acyl carrier protein (ACP) intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. The acyl-ACP intermediates butyryl (C4), -octanoyl (C8), -decanoyl (C10), -dodecanoyl (C12) and -tetradecanoyl (C14)-ACPs display marked changes in backbone HN, Cα and Cβ chemical shifts as a result of acyl chain insertion into the hydrophobic core. Chemical shift changes cast light on the mechanism of expansion of the acyl carrier protein core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a view to understanding the mechanism of the formation of 6-methoxy-2,2-(tetrachloro--phenylenedioxy)-naphthalen-1 (2H)-one (IIIa) in the reaction of 6-methoxy-1-tetralone (Ia) with tetrachloro-1,2-benzoquinone (II), the reaction of (II) with various tetralones and naphthols has been studied. Reaction with either α-tetralone or α-naphthol gives 2,2-(tetrachloro-o-phenylenedioxy)naphthalen-1 (2H)-one (IIIb), whereas reaction with either β-tetralone or β-naphthol gives a mixture of (IIIb) and ,1-(tetrachloro-o-phenylenedioxy)-naphthalen-2 (1H)-one (IX), with the former predominating. Further, reactions of (II) with 7-methoxy-3,4-dihydrophenanthren- 1 (2H)-one and m-methoxyphenol gave respectively 7-methoxy- ,2-(tetrachloro-o- phenylenedioxy)phenanthren-1 (2H)-one (VII) and 3-methoxy-6,6-(tetrachloro-o- phenylenedioxy)cyclohexa-2,4-dien-1-one (VIII). Structures of all these compounds have been proved on the basis of i.r. and n.m.r. data. The pathway to the formation of the condensates (III) is discussed.