977 resultados para GIANT MAGNETORESISTANCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the observation of giant photo induced optical bleaching in Sb/As(2)S(3) multilayered film at room and liquid He temperatures, when irradiated with 532 nm laser at moderate intensities. The experimental results show a dramatic increase in transmittance near the band gap regime at both the temperatures; however the rates at which transmission change occurs are rather slow at low temperature. The huge change in transmission is due to the photo induced intermixing of As(2)S(3) layer with Sb. Our XPS measurements show that photo induced intermixing occurs through the wrong homopolar bonds, which under actinic light illumination are converted into energetically favored hetropolar bonds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal composition of La0.67Cd0.33MnO3 was synthesized by ceramic route. The compound crystallized in a rhombohedral structure with lattice parameters a = 5.473(4) Å and α = 60°37′. Resistivity measurement showed an insulator-to-metal transition coupled with a ferromagnetic transition of around 255 K. Epitaxial thin films were fabricated on the LaAlO3 (100) substrate by a pulsed laser deposition technique. The psuedocubic lattice parameter a of the film is 3.873(4) Å. The insulator-to-metal transition of the film was observed at 250 K which is comparable with the bulk value. The film was ferromagnetic below this temperature. Magnetoresistance defined as ΔR/R0 = (RH−R0)/R0 was over −86% near the insulator-to-metal transition temperature of 240 K at 6 T magnetic field and over-30% at relatively low fields of 1 T. No magnetoresistance was observed at low temperatures in the film unlike in the polycrystalline sample, where about a 40% decrease in resistance was observed on applying 6 T magnetic field due to the spin dependent scattering at the grain boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized La0.83Na0.11MnO2.93 by heating La2O3 and MnCO3 in NaCl melt at 900 °C. The exact composition was arrived by analyzing each ion by an independent chemical method. The compound crystallized in a rhombohedral structure and showed an insulator-to-metal transition at 290 K. Epitaxial thin films were fabricated on LaAlO3 (100) using a pulsed laser deposition technique. The film also showed an insulator-to-metal transition at 290 K. Magnetoresistance [ΔR/R0 = (RH−R0)/R0] was −71% near the insulator-to-metal transition temperature of 290 K at 6 T magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observe an unusual tunneling magnetoresistance (TMR) phenomenon in a composite of La2/3Sr1/3MnO3 with CoFe2O4 where the TMR versus applied magnetic field loop suggests a ``negative coercive field.'' Tracing its origin back to a ``dipolar-biasing'' of La2/3Sr1/3MnO3 by CoFe2O4, we show that the TMR of even a single composite can be tuned continuously so that the resistance peak or the highest sensitivity of the TMR can be positioned anywhere on the magnetic field axis with a suitable magnetic history of the sample. This phenomenon of an unprecedented tunability of the TMR should be present in general in all such composites. (C) 2012 American Institute of Physics.http://dx.doi.org/10.1063/1.4731206]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present thermal and electrical transport measurements of low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We find that even in the supposedly strongly localized regime, where the electrical resistivity of the system is two orders of magnitude greater than the quantum of resistance h/e(2), the thermopower decreases linearly with temperature indicating metallicity. Remarkably, the magnitude of the thermopower exceeds the predicted value in noninteracting metallic 2DESs at similar carrier densities by over two orders of magnitude. Our results indicate a new quantum state and possibly a novel class of itinerant quasiparticles in dilute 2DESs at low temperatures where the Coulomb interaction plays a pivotal role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin valves have revolutionized the field of magnetic recording and memory devices. Spin valves are generally realized in thin film heterostructures, where two ferromagnetic (FM) layers are separated by a nonmagnetic conducting layer. Here, we demonstrate spin-valve-like magnetoresistance at room temperature in a bulk ferrimagnetic material that exhibits a magnetic shape memory effect. The origin of this unexpected behavior in Mn2NiGa has been investigated by neutron diffraction, magnetization, and ab initio theoretical calculations. The refinement of the neutron diffraction pattern shows the presence of antisite disorder where about 13% of the Ga sites are occupied by Mn atoms. On the basis of the magnetic structure obtained from neutron diffraction and theoretical calculations, we establish that these antisite defects cause the formation of FM nanoclusters with parallel alignment of Mn spin moments in a Mn2NiGa bulk lattice that has antiparallel Mn spin moments. The direction of the Mn moments in the soft FM cluster reverses with the external magnetic field. This causes a rotation or tilt in the antiparallel Mn moments at the cluster-lattice interface resulting in the observed asymmetry in magnetoresistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report low-dimensional fabrication of technologically important giant dielectric material CaCu3Ti4O12 (CCTO) using soft electron beam lithographic technique. Sol-gel precursor solution of CCTO was prepared using inorganic metal nitrates and Ti-isopropoxide. Employing the prepared precursor solution and e-beam lithographically fabricated resist mask CCTO dots with similar to 200 nm characteristic dimension were fabricated on platinized Si (111) substrate. Phase formation, chemical purity and crystalline nature of fabricated low dimensional structures were investigated with X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED), respectively. Morphological investigations were carried out with the help of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This kind of solution based fabrication of patterned low-dimensional high dielectric architectures might get potential significance for cost-effective technological applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic x-ray and neutron powder diffraction study of the giant tetragonality multiferroic (1-x) BiFeO3-(x) PbTiO3 have revealed that the compositions close to the morphotropic phase boundary present two different structural phase transition scenarios on cooling from the cubic phase: (i) cubic -> tetragonal (T-2) + tetragonal (T-1) -> tetragonal (T-1) and (ii) cubic -> tetragonal (T-2) + tetragonal (T-1) + rhombohedral (R3c) -> tetragonal (T-1) + rhombohedral (R3c). The comparatively larger tetragonality (c/a - 1) of the T-1 phase as compared to the coexisting isostructural T-2 phase is shown to be a result of significantly greater degree of overlap of the Pb/Bi-6s and Ti/Fe-3d with the O-2p orbitals as compared to that in the T-2 phase. The formation/suppression of the minor metastable rhombohedral phase seems to be governed by subtle play of local kinetic factors. In the scenario when the minor rhombohedral (R) phase is formed along with the tetragonal phases it is able to accommodate the large transformation stress in the system due to formation of the tetragonal phases, and prevent the solid from disintegration into powder after sintering. When the metastable rhombohedral phase is not formed, the large transformation strain ruptures the grain boundaries leading to fragmentation of the dense solid to powder. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4792215]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report thermopower (S) and electrical resistivity (rho (2DES) ) measurements in low-density (10(14) m(-2)), mesoscopic two-dimensional electron systems (2DESs) in GaAs/AlGaAs heterostructures at sub-Kelvin temperatures. We observe at temperatures a parts per thousand(2)0.7 K a linearly growing S as a function of temperature indicating metal-like behaviour. Interestingly this metallicity is not Drude-like, showing several unusual characteristics: (i) the magnitude of S exceeds the Mott prediction valid for non-interacting metallic 2DESs at similar carrier densities by over two orders of magnitude; and (ii) rho (2DES) in this regime is two orders of magnitude greater than the quantum of resistance h/e (2) and shows very little temperature-dependence. We provide evidence suggesting that these observations arise due to the formation of novel quasiparticles in the 2DES that are not electron-like. Finally, rho (2DES) and S show an intriguing decoupling in their density-dependence, the latter showing striking oscillations and even sign changes that are completely absent in the resistivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring spin-valve-type magnetoresistance (SVMR), recently observed in Sr2FeMoO6 samples, suggests the possibility of decoupling the maximal resistance from the coercivity of the sample. Here we present the evidence that SVMR can be engineered in specifically designed and fabricated core-shell nanoparticle systems, realized here in terms of soft magnetic Fe3O4 as the core and hard magnetic insulator CoFe2O4 as the shell materials. We show that this provides a magnetically switchable tunnel barrier that controls the magnetoresistance of the system, instead of the magnetic properties of the magnetic grain material, Fe3O4, and thus establishing the feasibility of engineered SVMR structures. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal rainfall patterns in Bangalore, India, have been reconstructed using stable isotopic ratios in the growth bands of Giant African Land Snail shells. The present study was conducted at Bangalore, India which receives rain during the summer months. The oxygen isotopic record in the rainwater samples collected during different months covering the period of the summer monsoon of the year 2008 is compared with the isotopic ratio in the gastropod growth bands deposited simultaneously. The chronology of the shell growth band is independently established assuming the growth rate observed in a chamber experiment maintaining similar relative humidity and temperature conditions. A consistent pattern observed in the isotopic ratio in the gastropod growth bands and rainwater is demonstrated and provides a novel approach for precipitation reconstruction at seasonal and weekly time scales. This approach of using isotopic ratios in the gastropod growth bands for rainfall can serve as a substitute for filling gaps in rainfall data and for cases where no rain records are available. In addition, they can be used to determine the frequencies and magnitudes of dry spells from the past records. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly monodisperse spherical magnetite (Fe3O4) nanoparticles are prepared by colloidal chemistry route. Magnetic and electronic transport properties of the annealed pellets of these nanoparticles are reported. Effect of external magnetic and electric fields on the magnetic and transport properties of the material are studied as a function of temperature. We find that the highest resistance state of the ferromagnetic system occurs at a magnetic field which is approximately equal to its magnetic coercivity; this establishes the magnetoresistance (MR) in this system to be of the conventional tunnelling type MR as against the spin-valve type MR found more recently in some ferromagnetic oxide systems. The material also shows electroresistance (ER) property with its low-temperature resistance being strongly dependent on the excitation current that is used for the measurement. This ER effect is concluded to be intrinsic to the material and is attributed to the electric field-induced melting of the charge-order state in magnetite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral metamaterials can have diverse technological applications, such as engineering strongly twisted local electromagnetic fields for sensitive detection of chiral molecules, negative indices of refraction, broadband circular polarization devices, and many more. These are commonly achieved by arranging a group of noble-metal nanoparticles in a chiral geometry, which, for example, can be a helix, whose chiroptical response originates in the dynamic electromagnetic interactions between the localized plasmon modes of the individual nanoparticles. A key question relevant to the chiroptical response of such materials is the role of plasmon interactions as the constituent particles are brought closer, which is investigated in this paper through theoretical and experimental studies. The results of our theoretical analysis, when the particles are brought in close proximity are dramatic, showing a large red shift and enhancement of the spectral width and a near-exponential rise in the strength of the chiroptical response. These predictions were further confirmed with experimental studies of gold and silver nanoparticles arranged on a helical template, where the role of particle separation could be investigated in a systematic manner. The ``optical chirality'' of the electromagnetic fields in the vicinity of the nanoparticles was estimated to be orders of magnitude larger than what could be achieved in all other nanoplasmonic geometries considered so far, implying the suitability of the experimental system for sensitive detection of chiral molecules.