995 resultados para Franz-Keldysh oscillation
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Oceanographic, hydrologic, and climatic data collected during 1916-'87 in Puget Sound's Main Basin (~200 m x 5 km x 100 km) and approaches oscillate at low frequency between two regimes (I, II). The oscillation accounts for a large fraction of the interannual variability (41-75%) and the zero crossings between regimes span approximately a decade. ... The transition between regimes is accompanied by substantial changes in the horizontal pressure and density fields between the Pacific coast and the mixing zones leading to the Basin, as well as within the Basin itself.
Resumo:
The effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean (EIO) off Java were evaluated through the use of remotely sensed environmental data (sea-surface-height anomaly [SSHA], sea-surface temperature [SST], and chlorophyll a concentration), and Bigeye Tuna catch data. Analyses were conducted for the period of 1997–2000, which included the 1997–98 El Niño and 1999–2000 La Niña events. The empirical orthogonal function (EOF) was applied to examine oceanographic parameters quantitatively. The relationship of those parameters to variations in catch distribution of Bigeye Tuna was explored with a generalized additive model (GAM). The mean hook rate was 0.67 during El Niño and 0.44 during La Niña, and catches were high where SSHA ranged from –21 to 5 cm, SST ranged from 24°C to 27.5°C, and chlorophyll-a concentrations ranged from 0.04 to 0.16 mg m–3. The EOF analysis confirmed that the 1997–98 El Niño affected oceanographic conditions in the EIO off Java. The GAM results indicated that SST was better than the other environmental factors (SSHA and chlorophyll-a concentration) as an oceanographic predictor of Bigeye Tuna catches in the region. According to the GAM predictions, the highest probabilities (70–80%) for Bigeye Tuna catch in 1997–2000 occurred during oceanographic conditions during the 1997–98 El Niño event.
Resumo:
The extreme phases of the Southern Oscillation (SO) have been linked to fairly persistent classes of circulation anomalies over the North Pacific and parts of North America. It has been more difficult to uncover correspondingly consistent patterns of surface temperature and precipitation over much of the continent. The few regions that appear to have consistent SO-related patterns of temperature and precipitation anomalies are identified and discussed. Also discussed are regions that appear to have strong SO-related surface anomalies whose sign varies from episode to episode.
Resumo:
Fire statistics (area burned) and fire-scar chronologies from tree rings show reduced fire activity during El Niño-Southern Oscillation (ENSO) in forests of Arizona and New Mexico. This relationship probably stems from increased fuel moisture after a wet winter and spring, but also could involve climatic controls on lightning activity at the onset of the monsoon season.
Resumo:
Sediments deposited in late Pleistocene Lake Estancia, central New Mexico, contain a paleoclimatic record that includes the last glacial maximum and deglacial episode. Stratigraphic reconstruction of an interval representing the highstand of the lake that occurred during the last glacial maximum reveals ~2000-, ~600-, and ~200-year oscillations in lake level and climate. Shifting position of the polar jetstream in response to expansion and contraction of the North American ice sheet may be partly responsible for the millenial-scale changes in Lake Estancia but probably does not explain the centennial-scale oscillations.
Resumo:
This study investigates the extent of the affect [sic] of the El Niño/Southern Oscillation on South American streamflow. The response of South American precipitation and temperature to the extreme phases of ENSO (El Niño and La Niña events) is well documented; but the response of South American hydrology has been barely studied. Such paucity of research contrasts sharply with that available on the response of North American streamflow to ENSO events.
Resumo:
Oscillation processes have been revealed in the course of reversible polarization study in ferroelectric liquid crystals. The oscillation frequency of polarization vector has been found to be from 1 to 30 kHz. The oscillation parameters were studied as functions of temperature. Temperature dependences of the oscillation amplitude and damping decrement have been measured.
Resumo:
Lean premixed prevaporized (LPP) technology has been widely used in the new generation of gas turbines in which reduced emissions are a priority. However, such combustion systems are susceptible to the damage of self-excited oscillations. Feedback control provide a way of preventing such dynamic stabilities. A flame dynamics assumption is proposed for a recently developed unsteady heat release model, the robust design technique, ℋ ∞ loop-shaping, is applied for the controller design and the performance of the controller is confirmed by simulations of the closed-loop system. The Integral Quadratic Constraints(IQC) method is employed to prove the stability of the closed-loop system. ©2010 IEEE.
Resumo:
The network oscillation and synaptic plasticity are known to be regulated by GABAergic inhibition, but how they are affected by changes in the GABA transporter activity remains unclear. Here we show that in the CA1 region of mouse hippocampus, pharmacolog
Resumo:
We study the Aharonov-Bohm effect in the optical phenomena of single-wall carbon nanotubes (SWCN) and also their chirality dependence. Especially, we consider the natural optical activity as a proper observable and derive its general expression based on a comprehensive symmetry analysis, which reveals the interplay between the enclosed magnetic flux and the tubule chirality for arbitrary chiral SWCN. A quantitative result for this optical property is given by a gauge invariant tight-binding approximation calculation to stimulate experimental measurements.
Resumo:
We have investigated the pump effect induced by the level oscillation in a quantum dot with asymmetric constrictions. The curve of pumped current versus the frequency of level oscillation undulates at zero temperature. The oscillation of the pumped current can be smeared by increasing the temperature and the coupling strength between the quantum dot and the leads. Either the temperature increase or the coupling strength enhancement can lead to a positive or negative effect on the pumped current, depending on the parameters of the quantum dot system. A larger level-oscillation magnitude results in a larger pumped current, especially in the low-frequency case. An analytical expression of the pumped current is obtained in the regime far from adiabatic. A convenient physical picture based on our analytic result is proposed, with which we can explain all the features of the pumped current curves.
Resumo:
A novel AC driving configuration is proposed for biased semiconductor superlattices, in which the THz driving is provided by an intense bichromatic cw laser in the visible light range. The frequency difference between two components of the laser is resonant with the Bloch oscillation. Thus, multi-photon processes mediated by the conduction (valence) band states lead to dynamical delocalization and localization of the valence (conduction) electrons, and to the formation and collapse of quasi-minibands. Thus, driven Bloch oscillators are predicted to generate persistent THz emission and harmonics of the dipole field, which are tolerant of the exciton and the relaxation effects.
Resumo:
An anomalous behavior of the current self-oscillation frequency is observed in the dynamic de voltage bands, emerging from each sawtoothlike branch of the current-voltage characteristic of a doped GaAs/A1As superlattice in the transition process from static to dynamic electric field domain formations. Varying the applied de voltage at a fixed temperature, we find that the frequency increases while the averaged current decreases. Inside each voltage band, the frequency has a strong voltage dependence in the temperature range where the averaged current changes with the applied de voltage. This dependence can be understood in terms of motion of the system along a limit cycle.
Resumo:
We investigate the transition from static to dynamic electric field domains (EFDs) in a doped GaAs/AlAs superlattice (SL). We show that a transverse magnetic field and/or the temperature can induce current self-oscillations. This observation can be attributed to the negative differential resistance (NDR) effect. Transverse magnetic field and the temperature can increase the NDR of a doped SL. A large NDR can lead to an unstable EFD in a certain range of d.c. bias. (C) 1999 Elsevier Science Ltd. All rights reserved.