748 resultados para FUZZY CONNECTEDNESS
Resumo:
Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.
Resumo:
Many classification systems rely on clustering techniques in which a collection of training examples is provided as an input, and a number of clusters c1,...cm modelling some concept C results as an output, such that every cluster ci is labelled as positive or negative. Given a new, unlabelled instance enew, the above classification is used to determine to which particular cluster ci this new instance belongs. In such a setting clusters can overlap, and a new unlabelled instance can be assigned to more than one cluster with conflicting labels. In the literature, such a case is usually solved non-deterministically by making a random choice. This paper presents a novel, hybrid approach to solve this situation by combining a neural network for classification along with a defeasible argumentation framework which models preference criteria for performing clustering.
Resumo:
PLFC is a first-order possibilistic logic dealing with fuzzy constants and fuzzily restricted quantifiers. The refutation proof method in PLFC is mainly based on a generalized resolution rule which allows an implicit graded unification among fuzzy constants. However, unification for precise object constants is classical. In order to use PLFC for similarity-based reasoning, in this paper we extend a Horn-rule sublogic of PLFC with similarity-based unification of object constants. The Horn-rule sublogic of PLFC we consider deals only with disjunctive fuzzy constants and it is equipped with a simple and efficient version of PLFC proof method. At the semantic level, it is extended by equipping each sort with a fuzzy similarity relation, and at the syntactic level, by fuzzily “enlarging” each non-fuzzy object constant in the antecedent of a Horn-rule by means of a fuzzy similarity relation.
Resumo:
Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming language which combines features from argumentation theory and logic programming, incorporating the treatment of possibilistic uncertainty at the object-language level. In spite of its expressive power, an important limitation in P-DeLP is that imprecise, fuzzy information cannot be expressed in the object language. One interesting alternative for solving this limitation is the use of PGL+, a possibilistic logic over Gödel logic extended with fuzzy constants. Fuzzy constants in PGL+ allow expressing disjunctive information about the unknown value of a variable, in the sense of a magnitude, modelled as a (unary) predicate. The aim of this article is twofold: firstly, we formalize DePGL+, a possibilistic defeasible logic programming language that extends P-DeLP through the use of PGL+ in order to incorporate fuzzy constants and a fuzzy unification mechanism for them. Secondly, we propose a way to handle conflicting arguments in the context of the extended framework.
Resumo:
This thesis focuses on the social-psychological factors that help coping with structural disadvantage, and specifically on the role of cohesive ingroups and the sense of connectedness and efficacy they entail in this process. It aims to complement existing group-based models of coping that are grounded in a categorization perspective to groups and consequently focus exclusively on the large-scale categories made salient in intergroup contexts of comparisons. The dissertation accomplishes this aim through a reconsideration of between-persons relational interdependence as a sufficient and independent antecedent of a sense of groupness, and the benefits that a sense of group connectedness in one's direct environment, regardless of the categorical or relational basis of groupness, might have in the everyday struggles of disadvantaged group members. The three empirical papers aim to validate this approach, outlined in the first theoretical introduction, by testing derived hypotheses. They are based on data collected with youth populations (15-30) from three institutions in French-speaking Switzerland within the context of a larger project on youth transitions. Methods of data collection are paper-pencil questionnaires and in-depth interviews with a selected sub-sample of participants. The key argument of the first paper is that members of socially disadvantaged categories face higher barriers to their life project and that a general sense of connectedness, either based on categorical identities or other proximal groups and relations, mitigates the feeling of powerlessness associated with this experience. The second paper develops and tests a model that defines individual needs satisfaction as antecedent of self-group bonds and the efficacy beliefs derived from these intragroup bonds as the mechanism underlining the role of ingroups in coping. The third paper highlights the complexities that might be associated with the construction of a sense of groupness directly from intergroup comparisons and categorization-based disadvantage, and points out a more subtle understanding of the processes underling the emergence of groupness out of the situation of structural disadvantage. Overall, the findings confirm the central role of ingroups in coping with structural disadvantage and the importance of an understanding of groupness and its role that goes beyond the dominant focus on intergroup contexts and categorization processes.
Resumo:
Creació d’un sistema format per un algoritme genètic que permeti dissenyar de forma automática, les dades dels valors lingüístics d’un controlador fuzzy, per a un robot amb tracció diferencial. Les dades que s’han d’obtenir han de donar-li al robot, la capacitat d’arribar a un destí, evitant els obstacles que vagi trobant al llarg del camí
Resumo:
The extension of traditional data mining methods to time series has been effectively applied to a wide range of domains such as finance, econometrics, biology, security, and medicine. Many existing mining methods deal with the task of change points detection, but very few provide a flexible approach. Querying specific change points with linguistic variables is particularly useful in crime analysis, where intuitive, understandable, and appropriate detection of changes can significantly improve the allocation of resources for timely and concise operations. In this paper, we propose an on-line method for detecting and querying change points in crime-related time series with the use of a meaningful representation and a fuzzy inference system. Change points detection is based on a shape space representation, and linguistic terms describing geometric properties of the change points are used to express queries, offering the advantage of intuitiveness and flexibility. An empirical evaluation is first conducted on a crime data set to confirm the validity of the proposed method and then on a financial data set to test its general applicability. A comparison to a similar change-point detection algorithm and a sensitivity analysis are also conducted. Results show that the method is able to accurately detect change points at very low computational costs. More broadly, the detection of specific change points within time series of virtually any domain is made more intuitive and more understandable, even for experts not related to data mining.
Resumo:
Fuzzy subsets and fuzzy subgroups are basic concepts in fuzzy mathematics. We shall concentrate on fuzzy subgroups dealing with some of their algebraic, topological and complex analytical properties. Explorations are theoretical belonging to pure mathematics. One of our ideas is to show how widely fuzzy subgroups can be used in mathematics, which brings out the wealth of this concept. In complex analysis we focus on Möbius transformations, combining them with fuzzy subgroups in the algebraic and topological sense. We also survey MV spaces with or without a link to fuzzy subgroups. Spectral space is known in MV algebra. We are interested in its topological properties in MV-semilinear space. Later on, we shall study MV algebras in connection with Riemann surfaces. In fact, the Riemann surface as a concept belongs to complex analysis. On the other hand, Möbius transformations form a part of the theory of Riemann surfaces. In general, this work gives a good understanding how it is possible to fit together different fields of mathematics.
Resumo:
This paper measures the connectedness in EMU sovereign market volatility between April 1999 and January 2014, in order to monitor stress transmission and to identify episodes of intensive spillovers from one country to the others. To this end, we first perform a static and dynamic analysis to measure the total volatility connectedness in the entire period (the system-wide approach) using a framework recently proposed by Diebold and Yılmaz (2014). Second, we make use of a dynamic analysis to evaluate the net directional connectedness for each country and apply panel model techniques to investigate its determinants. Finally, to gain further insights, we examine the timevarying behaviour of net pair-wise directional connectedness at different stages of the recent sovereign debt crisis.
Resumo:
Avhandlingen behandlar temat territoriell autonomi ur ett globalt perspektiv. Syftet är dels att kartlägga de territoriella autonomierna i världen och dels att visa hur en ny metod som fuzzy-set kan användas inom ämnesområdet jämförande politik. Forskningsproblemet är att försöka finna de bakgrundsfaktorer som förklarar uppkomsten av territoriell autonomi som sådant. Territoriella autonomier ses som särlösningar inom stater. Dessa regioner har erhållit en specialställning i förhållande till andra regioner inom respektive stat och även i förhållande till centralmakten i övrigt. Regionerna kan därför ses som undantag inom det enhetliga federala, regionala eller decentraliserade systemet inom en viss stat ifråga. En kartläggning visar att det finns 65 specialregioner fördelade på 25 stater i världen. De flesta av dessa utgörs av öar. Resultaten visar att det finns två vägar vilka leder till territoriell autonomi i allmänhet. Den ena vägen är en kombination av etnisk särprägel och liten befolkningsmängd, medan den andra vägen utgörs av kombinationen av historiska orsaker och geografiskt avstånd. Båda vägar är lika giltiga och förutsättningen är en demokratisk miljö.
Resumo:
In this work a fuzzy linear system is used to solve Leontief input-output model with fuzzy entries. For solving this model, we assume that the consumption matrix from di erent sectors of the economy and demand are known. These assumptions heavily depend on the information obtained from the industries. Hence uncertainties are involved in this information. The aim of this work is to model these uncertainties and to address them by fuzzy entries such as fuzzy numbers and LR-type fuzzy numbers (triangular and trapezoidal). Fuzzy linear system has been developed using fuzzy data and it is solved using Gauss-Seidel algorithm. Numerical examples show the e ciency of this algorithm. The famous example from Prof. Leontief, where he solved the production levels for U.S. economy in 1958, is also further analyzed.
Resumo:
Since its introduction, fuzzy set theory has become a useful tool in the mathematical modelling of problems in Operations Research and many other fields. The number of applications is growing continuously. In this thesis we investigate a special type of fuzzy set, namely fuzzy numbers. Fuzzy numbers (which will be considered in the thesis as possibility distributions) have been widely used in quantitative analysis in recent decades. In this work two measures of interactivity are defined for fuzzy numbers, the possibilistic correlation and correlation ratio. We focus on both the theoretical and practical applications of these new indices. The approach is based on the level-sets of the fuzzy numbers and on the concept of the joint distribution of marginal possibility distributions. The measures possess similar properties to the corresponding probabilistic correlation and correlation ratio. The connections to real life decision making problems are emphasized focusing on the financial applications. We extend the definitions of possibilistic mean value, variance, covariance and correlation to quasi fuzzy numbers and prove necessary and sufficient conditions for the finiteness of possibilistic mean value and variance. The connection between the concepts of probabilistic and possibilistic correlation is investigated using an exponential distribution. The use of fuzzy numbers in practical applications is demonstrated by the Fuzzy Pay-Off method. This model for real option valuation is based on findings from earlier real option valuation models. We illustrate the use of number of different types of fuzzy numbers and mean value concepts with the method and provide a real life application.
Resumo:
Neste trabalho, foi utilizada uma ferramenta matemática promissora na análise de sistemas e/ou processos, particularmente na área de produção animal. Essa ferramenta é a desenvolvida segundo a abordagem da teoria dos Conjuntos Fuzzy e, neste caso específico, permitiu a análise da composição das variáveis climáticas independentes, como temperatura de bulbo seco e umidade relativa do ar, que influenciam na variável dependente denominada conforto térmico das aves. Foi realizada a construção de regras baseadas na intuição humana, segundo o conhecimento de especialistas da área, a partir do que é possível simular cenários distintos para o suporte à decisão de construção de galpões para abrigo a animais. Neste trabalho, foi estimado o conforto térmico para alojamento de aves poedeiras em produção. Os resultados foram analisados, usando-se o ambiente de computação científica MATLAB 6.5, o que pode ser realizado iterativamente a cada cenário gerado. Com base nos resultados obtidos, pode-se analisar as condições de conforto para distintas composições das variáveis de entrada.
Resumo:
O objetivo desta pesquisa consistiu na avaliação do ambiente de alojamento, estimando as condições favoráveis ao melhor desempenho de matrizes gestantes. O experimento foi realizado no período compreendido entre 4-1 e 11-3-2005, em propriedade de produção industrial de suínos, localizada no município de Elias Fausto - SP. A pesquisa foi desenvolvida no setor de gestação, com 24 matrizes primíparas, 12 fêmeas alojadas em baias individuais (T1) e 12 em baias coletivas (T2). O trabalho foi dividido em duas etapas, em função da forma de avaliação dos dados: análise bioclimática e da qualidade do ar, e estimativa dos padrões de conforto térmico ambiental. As variáveis bioclimáticas T (ºC), UR (%), Tgn (ºC) e fisiológicas, taxa respiratória (mov min-1) e temperatura retal (ºC) apontam o sistema de confinamento em baias coletivas como o que possibilitou melhor condicionamento térmico natural às matrizes em gestação. O uso da teoria dos conjuntos fuzzy permitiu que se fizesse inferência entre os dados resultantes do trabalho experimental com os estabelecidos pela literatura, por intermédio de base de regras, para a determinação do conforto ambiental aplicado a matrizes na fase de gestação.
Resumo:
Entender o comportamento e suas pequenas variações decorrentes das mudanças do ambiente térmico e desenvolver modelos que simulem o bem-estar a partir de respostas das aves ao ambiente constituem o primeiro passo para a criação de um sistema de monitoramento digital de aves em galpões de produção. Neste trabalho, foi desenvolvido um sistema de suporte à decisão com base na teoria dos conjuntos fuzzy para a estimativa do bem-estar de matrizes pesadas em função de frequências e duração dos comportamentos expressos pelas aves. O desenvolvimento do sistema passou por cinco etapas distintas: 1) organização dos dados experimentais; 2) apresentação dos vídeos em entrevista com "especialista"; 3) criação das funções de pertinência com base nas entrevistas e na revisão da literatura; 4) simulação de frequências de ocorrências e tempos médios de expressão dos comportamentos classificados como indicadores de bem-estar utilizando equações de regressão obtidas na literatura, e 5) construção das regras, simulação e validação do sistema. O sistema fuzzy desenvolvido estimou satisfatoriamente o bem-estar de matrizes pesadas, tendo na sua última versão, com maior número de regras, acertado 77,8% dos dados experimentais, comparados com as respostas esperadas por um especialista. O sistema pode ser utilizado como instrumento matemático-computacional para apoiar decisões em galpões de produção de matrizes pesadas.