Adding similarity-based reasoning capabilities to a Horn fragment of possibilistic logic with fuzzy constants


Autoria(s): Alsinet, Teresa; Godo i Lacasa, Lluís
Data(s)

2004

Resumo

PLFC is a first-order possibilistic logic dealing with fuzzy constants and fuzzily restricted quantifiers. The refutation proof method in PLFC is mainly based on a generalized resolution rule which allows an implicit graded unification among fuzzy constants. However, unification for precise object constants is classical. In order to use PLFC for similarity-based reasoning, in this paper we extend a Horn-rule sublogic of PLFC with similarity-based unification of object constants. The Horn-rule sublogic of PLFC we consider deals only with disjunctive fuzzy constants and it is equipped with a simple and efficient version of PLFC proof method. At the semantic level, it is extended by equipping each sort with a fuzzy similarity relation, and at the syntactic level, by fuzzily “enlarging” each non-fuzzy object constant in the antecedent of a Horn-rule by means of a fuzzy similarity relation.

Identificador

http://hdl.handle.net/10459.1/46632

Idioma(s)

eng

Publicador

Elsevier

Relação

Versió postprint del document publicat a: http://dx.doi.org/10.1016/j.fss.2003.10.013

Fuzzy Sets and Systems, 2004, vol. 144, núm. 1, pàg. 43–65

Direitos

info:eu-repo/semantics/openAccess

(c) Elsevier, 2004

Palavras-Chave #Possibilistic logic #Fuzzy constants #Horn-rule sublogic #Similarity-based unification #Programació lògica #Lògica probabilística
Tipo

article