972 resultados para Electrical engineering students


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the university education arena, it is becoming apparent that traditional methods of conducting classes are not the most effective ways to achieve desired learning outcomes. The traditional class/method involves the instructor verbalizing information for passive, note-taking students who are assumed to be empty receptacles waiting to be filled with knowledge. This method is limited in its effectiveness, as the flow of information is usually only in one direction. Furthermore, “It has been demonstrated that students in many cases can recite and apply formulas in numerical problems, but the actual meaning and understanding of the concept behind the formula is not acquired (Crouch & Mazur)”. It is apparent that memorization is the main technique present in this approach. A more effective method of teaching involves increasing the students’ level of activity during, and hence their involvement in the learning process. This technique stimulates self- learning and assists in keeping these students’ levels of concentration more uniform. In this work, I am therefore interested in studying the influence of a particular TLA on students’ learning-outcomes. I want to foster high-level understanding and critical thinking skills using active learning (Silberman, 1996) techniques. The TLA in question aims to promote self-study by students and to expose them to a situation where their learning-outcomes can be tested. The motivation behind this activity is based on studies which suggest that some sensory modalities are more effective than others. Using various instruments for data collection and by means of a thorough analysis I present evidence of the effectiveness of this action research project which aims to improve my own teaching practices, with the ultimate goal of enhancing student’s learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on an experiment that was conducted to determine the extent to which group dynamics impacts on the effectiveness of software development teams. The experiment was conducted on software engineering project students at the Queensland University of Technology (QUT).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review of the issues for supporting learning of power engineering in Australia is presented in this paper. The learning needs of students and the support available in blended learning and through distance educations are explored in this review. Specific software tools to assist the learning environment are appraised and the relevance for the next generation of power engineers assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been a large emphasis placed on the need to use Learning Management Systems (LMS) in the field of higher education, with many universities mandating their use. An important aspect of these systems is their ability to offer collaboration tools to build a community of learners. This paper reports on a study of the effectiveness of an LMS (Blackboard©) in a higher education setting and whether both lecturers and students voluntarily use collaborative tools for teaching and learning. Interviews were conducted with participants (N=67) from the faculties of Science and Technology, Business, Health and Law. Results from this study indicated that participants often use Blackboard© as an online repository of learning materials and that the collaboration tools of Blackboard© are often not utilised. The study also found that several factors have inhibited the use and uptake of the collaboration tools within Blackboard©. These have included structure and user experience, pedagogical practice, response time and a preference for other tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The well-known difficulties students exhibit when learning to program are often characterised as either difficulties in understanding the problem to be solved or difficulties in devising and coding a computational solution. It would therefore be helpful to understand which of these gives students the greatest trouble. Unit testing is a mainstay of large-scale software development and maintenance. A unit test suite serves not only for acceptance testing, but is also a form of requirements specification, as exemplified by agile programming methodologies in which the tests are developed before the corresponding program code. In order to better understand students’ conceptual difficulties with programming, we conducted a series of experiments in which students were required to write both unit tests and program code for non-trivial problems. Their code and tests were then assessed separately for correctness and ‘coverage’, respectively. The results allowed us to directly compare students’ abilities to characterise a computational problem, as a unit test suite, and develop a corresponding solution, as executable code. Since understanding a problem is a pre-requisite to solving it, we expected students’ unit testing skills to be a strong predictor of their ability to successfully implement the corresponding program. Instead, however, we found that students’testing abilities lag well behind their coding skills.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction The onset of Personally Controlled Electronic Health Records in Australia demand healthcare decision making processes to comprise, understand and accept electronic health records (EHR). Nurses play a key, central role in the healthcare decision making process and their perceptions and attitudes of EHRs are significant [1], which develop during their academic life. However, studies aimed at nursing students’ attitudes of EHRs are very limited [2-4]. A proper understanding of these attitudes and how they evolve with academic progress is important. This paper presents results from a survey conducted at a leading University in Queensland, Australia as a first step to filling this gap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research study examines qualitatively and quantitatively the influence of introducing an activity in the traditional engineering classroom. It studies instances of active learning and its relationship with the student learning outcomes. The primary purpose of this study was to compare the learning outcomes of students who were involved in an active TLA with those students who were not, instead they learned under traditional teaching and studying approaches. I present the argument that the introduction of a TLA in class stimulates student engagement bringing enormous benefits to student learning. The outcomes of this study were measured using qualitative and quantitative data to evaluate the levels of student engagement, achievement and satisfaction in the terms of Intended Learning Outcomes (ILOs). Results indicate that students held positive attitude towards the activities in class and also, that a positive link between TLA, learning approach and learning outcome exist. It also provides insights about the potential benefits of active learning when compared with traditional, passive and teacher-centred methods of teaching & learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Research on engineering design is a core area of concern within engineering education and a fundamental understanding of how engineering students approach and undertake design is necessary in order to develop effective design models and pedagogies. Understanding the factors related to design experiences in education and how they affect student practice can help educators as well as designers to leverage these factors as part of the design process. PURPOSE This study investigated the design practices of first-year engineering students’ and their experiences with a first-year engineering course design project. The research questions that guided the investigation were: 1. From a student perspective, what design parameters or criteria are most important? 2. How does this perspective impact subsequent student design practice throughout the design process? DESIGN/METHOD The authors employed qualitative multi-case study methods (Miles & Huberman, 1994) in order to the answer the research questions. Participant teams were observed and video recorded during team design meetings in which they researched the background for the design problem, brainstormed and sketched possible solutions, as well as built prototypes and final models of their design solutions as part of a course design project. Analysis focused on explanation building (Yin, 2009) and utilized within-case and cross-case analysis (Miles & Huberman, 1994). RESULTS We found that students focused disproportionally on the functional parameter, i.e. the physical implementation of their solution, and the possible/applicable parameter, i.e. a possible and applicable solution that benefited the user, in comparison to other given parameters such as safety and innovativeness. In addition, we found that individual teams focused on the functional and possible/ applicable parameters in early design phases such as brainstorming/ ideation and sketching. When prompted to discuss these non-salient parameters (from the student perspective) in the final design report, student design teams often used a post-hoc justification to support how the final designs fit the parameters that they did not initially consider. CONCLUSIONS This study suggests is that student design teams become fixated on (and consequently prioritize) certain parameters they interpret as important because they feel these parameters were described more explicitly in terms how they were met and assessed. Students fail to consider other parameters, perceived to be less directly assessable, unless prompted to do so. Failure to consider other parameters in the early design phases subsequently affects their approach in design phases as well. Case studies examining students’ study strategies within three Australian Universities illustrate similarities with some student approaches to design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The University of Queensland (UQ) has extensive laboratory facilities associated with each course in the undergraduate electrical engineering program. The laboratories include machines and drives, power systems simulation, power electronics and intelligent equipment diagnostics. A number of postgraduate coursework programs are available at UQ and the courses associated with these programs also use laboratories. The machine laboratory is currently being renovated with i-lab style web based experimental facilities, which could be remotely accessed. Senior level courses use independent projects using laboratory facilities and this is found to be very useful to improve students' learning skill. Laboratory experiments are always an integral part of a course. Most of the experiments are conducted in a group of 2-3 students and thesis projects in BE and major projects in ME are always individual works. Assessment is done in-class for the performance and also for the report and analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

University orientation is a key event for new students that aids in the transition from a school to a university environment. A smartphone orientation application was built to aid students attending the event. Achievements were added to the application in an attempt to engage students further with the orientation activities and application. An exploratory field study was undertaken to evaluate the effect of the achievement system on participants attending orientation. Forty-six new students were recruited to test the orientation application. Twenty-six participants used a gamified version of the orientation application and twenty participants used a non-gamified version. While the gamification was generally well received, no impact on user experience was evident. Some effect on engagement with orientation activities was shown. Participants who used the gamified system reported the game elements as fun, but some negative issues arose, such as cheating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: A major challenge for assessing students’ conceptual understanding of STEM subjects is the capacity of assessment tools to reliably and robustly evaluate student thinking and reasoning. Multiple-choice tests are typically used to assess student learning and are designed to include distractors that can indicate students’ incomplete understanding of a topic or concept based on which distractor the student selects. However, these tests fail to provide the critical information uncovering the how and why of students’ reasoning for their multiple-choice selections. Open-ended or structured response questions are one method for capturing higher level thinking, but are often costly in terms of time and attention to properly assess student responses. Purpose: The goal of this study is to evaluate methods for automatically assessing open-ended responses, e.g. students’ written explanations and reasoning for multiple-choice selections. Design/Method: We incorporated an open response component for an online signals and systems multiple-choice test to capture written explanations of students’ selections. The effectiveness of an automated approach for identifying and assessing student conceptual understanding was evaluated by comparing results of lexical analysis software packages (Leximancer and NVivo) to expert human analysis of student responses. In order to understand and delineate the process for effectively analysing text provided by students, the researchers evaluated strengths and weakness for both the human and automated approaches. Results: Human and automated analyses revealed both correct and incorrect associations for certain conceptual areas. For some questions, that were not anticipated or included in the distractor selections, showing how multiple-choice questions alone fail to capture the comprehensive picture of student understanding. The comparison of textual analysis methods revealed the capability of automated lexical analysis software to assist in the identification of concepts and their relationships for large textual data sets. We also identified several challenges to using automated analysis as well as the manual and computer-assisted analysis. Conclusions: This study highlighted the usefulness incorporating and analysing students’ reasoning or explanations in understanding how students think about certain conceptual ideas. The ultimate value of automating the evaluation of written explanations is that it can be applied more frequently and at various stages of instruction to formatively evaluate conceptual understanding and engage students in reflective

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STIMulate is a support for learning program at the Queensland University of Technology in Brisbane, Australia. The program provides assistance in mathematics, science and information technology for undergraduate students. This paper develops personas - archetypal users - that represent the attitudes and motivations of students that utilise STIMulate (in particular, the IT stream). Seven different personas were developed based on interviews gathered from Peer Learning Facilitators (PLF) who are experienced students that have excelled in relevant subject areas. The personas were then validated by a PLF focus group. Developing the personas enabled us to better understand the characteristics and needs of the students using the STIMulate program, enabling a more critical analysis of the quality of the service provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Internationally, there is a growing concern for developing STEM education to prepare students for a scientifically and technologically advanced society. Despite educational bodies lobbying for an increased focus on STEM, there is limited research on how engineering might be incorporated especially in the elementary school curriculum. A framework of five comprehensive core engineering design processes (problem scoping, idea generation, design and construction, design evaluation, redesign), adapted from the literature on design thinking in young children, served as a basis for the study. We report on a qualitative study of fourth-grade students’ developments in working an aerospace problem, which took place during the first year of a 3-year longitudinal study. Students applied design processes together with their mathematics and science knowledge to the design and redesign of a 3-D model plane. Results: The study shows that through an aerospace engineering problem, students could complete initial designs and redesigns of a model plane at varying levels of sophistication. Three levels of increasing sophistication in students’ sketches were identified in their designs and redesigns. The second level was the most prevalent involving drawings or templates of planes together with an indication of how to fold the materials as well as measurements linked to the plane’s construction. The third level incorporated written instructions and calculations. Students’ engagement with each of the framework’s design processes revealed problem scoping components in their initial designs and redesigns. Furthermore, students’ recommendations for improving their launching techniques revealed an ability to apply their mathematics knowledge in conjunction with their science learning on the forces of flight. Students’ addition of context was evident together with an awareness of constraints and a consideration of what was feasible in their design creation. Interestingly, students’ application of disciplinary knowledge occurred more frequently in the last two phases of the engineering framework (i.e., design evaluation and redesign), highlighting the need for students to reach these final phases to enable the science and mathematics ideas to emerge. Conclusions: The study supports research indicating young learners’ potential for early engineering. Students can engage in design and redesign processes, applying their STEM disciplinary knowledge in doing so. An appropriate balance is needed between teacher input of new concepts and students’ application of this learning in ways they choose. For example, scaffolding by the teacher about how to improve designs for increased detail could be included in subsequent experiences. Such input could enhance students’ application of STEM disciplinary knowledge in the redesign process. We offer our framework of design processes for younger learners as one way to approach early engineering education with respect to both the creation of rich problem experiences and the analysis of their learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development and use of personas, a Human Computer Interaction (HCI) research methodology, within the STIMulate peer learning program, in order to better understand student behaviour patterns and motivations. STIMulate is a support for learning program at the Queensland University of Technology (QUT) in Brisbane, Australia. The program provides assistance in mathematics, science and information technology (IT) for course work students. A STIMulate space is provided for students to study and obtain one-on-one assistance from Peer Learning Facilitators (PLFs), who are experienced students that have excelled in relevant subject areas. This paper describes personas – archetypal users - that represent the motivations and behavioural patterns of students that utilise STIMulate (particularly the IT stream). The personas were developed based on interviews with PLFs, and subsequently validated by a PLF focus group. Seven different personas were developed. The personas enable us to better understand the characteristics of the students utilising the STIMulate program. The research provides a clearer picture of visiting student motivations and behavioural patterns. This has helped us identify gaps in the services provided, and be more aware of our assumptions about students. The personas have been deployed in PLF training programs, to help PLFs provide a better service to the students. The research findings suggest further study on the resonances between some students and PLFs, which we would like to better elicit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern student represents a change from the traditional learner. More than ever before, additional resources are available online and yet personalised learning and peer-assistance programs are becoming an essential part of tertiary education delivery. This paper presents the first stage in a user-centred design approach to the analysis of the completeness and efficacy of such a personalised, peer-based support for learning program. This approach used an iterative design methodology based on contextual interview, workshops and focus groups to develop personas representing students visiting the program. Initial uses of these developed personas have included training of new personnel as well as the evaluation of the program. Overall the use of this user-centred approach and iterative persona development methodology has yielded an invaluable resource for the design of support for learning programs across the higher education industry within Australia and beyond.