812 resultados para Cordão Umbilical


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The umbilical cord is a structure that provides vascular flow between the fetus and the placenta. It contains two arteries and one vein, which are surrounded and supported by gelatinous tissue known as Wharton’s jelly. There are many umbilical cord abnormalities that are related to the prognosis of fetus survival and birth weight. The authors report a case of umbilical cord constriction due to the localized absence of Wharton’s jelly, which was undiagnosed antenatally and had a fatal outcome. A review of the association between the absence of Wharton’s jelly and an unfavorable pregnancy outcome was undertaken.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Células-tronco mesenquimais (CTM) apresentam tropismo a tumores, sendo importantes componentes do estroma tumoral. No cérebro, o nicho perivascular é uma importante fonte de CTM, as quais podem contribuir direta e/ou indiretamente para o desenvolvimento de tumores, embora os mecanismos envolvidos sejam pouco conhecidos. No presente trabalho, investigou-se a influência de CTM sobre a proliferação, capacidade invasiva e tumorigenicidade de células de Glioblastoma (GBM) humano. Sabe-se que CTM produzem TGFB1, uma citocina multifuncional envolvida em imunomodulação, proliferação, migração e transição epitelial-mesenquimal de células tumorais. Experimentos in vitro, realizados com meios condicionados de CTM de cordão umbilical humano com silenciamento permanente do gene TGFB1, demonstraram que o TGFB1 secretado por CTM é capaz de aumentar significativamente a proliferação e viabilidade de células de GBM humano da linhagem U87FP635. Esses resultados revelam uma importante ação parácrina dessa citocina regulatória, quando produzida por outros tipos celulares contidos no microambiente tumoral. Entretanto, sob condições experimentais que melhor mimetizam o microambiente tumoral, detectou-se que CTM também afetam o comportamento de células tumorais por um mecanismo alternativo, dependente de contato celular, mas independente dos níveis de TGFB1 secretados pelas CTM. Sob condições de cocultivo celular, envolvendo contato físico entre CTM e células de GBM U87FP635, detectou-se um aumento significativo na quantidade de células tumorais viáveis. Quando cultivadas na forma de esferoides tumorais, o contato com CTM aumentou a capacidade invasiva das células U87FP635. Finalmente, em modelo in vivo ectópico de GBM, células U87FP635 geraram tumores mais desenvolvidos quando coinjetadas com CTM. Esses efeitos pró-tumorigênicos foram observados tanto em contato com CTM controles, quanto com CTM contendo o gene TGFB1 permanentemente silenciado. Assim, esses achados indicam que CTM podem exercer efeitos pró-tumorigênicos por dois mecanismos alternativos e independentes: ação parácrina de TGFB1 secretado por CTM e ação mediada por contato célula-célula. Nas condições experimentais testadas, o mecanismo dependente de contato célula-célula demonstrou ser predominante. O estudo proteômico do secretoma dessas células identificou 126 proteínas diferencialmente expressas além de 10 proteínas exclusivamente detectadas em meios condicionados de cocultivos de CTM com células de GBM U87FP635. Cerca de 80% dessas proteínas exclusivamente secretadas pelo contato célula-célula são componentes de exossomos e estão envolvidas em proliferação celular e desenvolvimento tecidual. Esses resultados apontam uma interação dinâmica de comunicação entre CTM e células tumorais, e revelam algumas proteínas interessantes potencialmente envolvidas em uma ação pró-tumorigênica de CTM mediada por contato celular

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Há poucos dados na literatura sobre o transporte transplacentário de imunoglobulinas em gestações múltiplas. O objetivo deste estudo foi observar fatores que influenciam a concentração de imunoglobulina G (IgG) no cordão umbilical dos neonatos e a transferência transplacentária de IgG total e de IgG contra o Streptococcus grupo B (EGB), e lipopolissacarídeos (LPS) de Klebsiella spp. e Pseudomonas spp.. Métodos: estudo prospectivo realizado no Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo no período de 2012 a 2013. Foram coletadas amostras de sangue materno e de cordão umbilical no momento do parto. Os critérios de inclusão foram gestações gemelares com ausência de sinais de infecção por HIV, citomegalovírus, Hepatites B e C, toxoplasmose e rubéola e ausência de doenças autoimunes, malformação fetal e síndromes genéticas. A análise multivariada foi realizada para avaliar a associação entre os níveis de IgG em cordão umbilical e as taxas de transferência de anticorpos com a concentração materna de IgG, a corionicidade da gestação, a presença de insuficiência placentária, a restrição de crescimento intrauterino, a idade gestacional de nascimento, o peso de nascimento, o tabagismo, a doença materna e a via de parto. Resultados: a concentração de IgG total em cordão umbilical apresentou correlação positiva com os níveis maternos séricos de IgG total e a idade gestacional do parto. Os níveis de IgG total em cordão umbilical foram significativamente menores em gestações monocoriônicas quando comparadas às dicoriônicas. A taxa de transferência de IgG total apresentou correlação positiva com a idade gestacional do parto, mas negativa com as concentrações maternas de IgG total. As concentrações de IgG contra EGB e LPS de Klebsiella spp. e Pseudomonas spp. apresentaram associação com os níveis maternos de IgG específicos contra esses antígenos e com o diabetes. Os níveis de IgG contra LPS de Klebsiella spp. também foram associados com o peso de nascimento e com hipertensão materna. As taxas de transferência de IgG contra EGB e LPS de Pseudomonas spp. apresentaram correlação com os níveis maternos de IgG específicos contra os antígenos referidos. A taxa de transferência de IgG contra EGB também esteve associada com a idade gestacional do parto, enquanto a taxa de transferência de IgG contra LPS de Pseudomonas spp. apresentou correlação com diabetes. Não houve correlação entre a taxa de transferência de IgG contra a LPS de Klebsiella spp. com nenhum fator analisado. Conclusão: em gestações gemelares, a concentração total de IgG em cordão umbilical foi influenciada pela concentração materna de IgG total, pela idade gestacional do parto e pela corionicidade placentária. As concentrações de IgG total foram significativamente menores em gestações monocoriônicas que em dicoriônicas. As concentrações séricas de IgG contra EGB e LPS de Klebsiella spp. e Pseudomonas spp. em cordão umbilical apresentaram associação com os níveis maternos de IgG específicos contra esses antígenos e com a presença de diabetes. Todos os outros parâmetros estudados apresentaram diferentes associações com as concentrações de IgG e com as taxas de transferências de IgG específicas contra cada antígeno investigado

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A possibilidade de repor células perdidas em doenças neurodegenerativas através de transplantes com células-troncos das mais diversas fontes vem sendo amplamente estudada. As células-tronco adultas (CTA) podem ser facilmente isoladas e sua utilização na pesquisa não envolve questões éticas e religiosas. Além disso, estas células são menos propícias à transformação tumoral do que células-tronco embrionárias, outra importante fonte de células para terapias celulares. No entanto, as CTA são, em estados fisiológicos, restritas a geração de células dos seus tecidos de origem, o que poderia limitar a sua utilização. Porém, nos últimos anos, uma série de técnicas vem sendo descritas com o objetivo de reverter tais limitações. Neste trabalho, nós investigamos a capacidade das células-tronco mesenquimais adultas, isoladas de camundongos ou do cordão umbilical humano, serem induzidas a adquirir um fenótipo neuronal de forma direta, sem passar por um estágio de célula progenitora ou pluripotente, através da reprogramação genética com genes pró-neurais. Nossos resultados indicam que tanto células-tronco mesenquimais adultas murinas quanto humanas podem ser reprogramadas em neurônios após a expressão combinada de Sox2 e Ascl1 ou Sox2 e Neurog2. As células reprogramadas exibem morfologias compatíveis com o fenótipo neuronal, expressam proteínas típicas de neurônios maduros, apresentam a capacidade de gerar potenciais de ação repetitivos e formam conexões sinápticas com outros neurônios presentes no cultivo. Portanto, nosso trabalho apresenta a primeira evidência de reprogramação direta de células-tronco mesenquimais humanas em neurônios funcionais.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vitamin A is an essential nutrient for many physiological processes such as growth and development, so that their adequate nutritional state is essential during pregnancy and lactation. Lactating women and children in breastfeeding are considered risk groups for vitamin A deficiency and some factors may increase the risk of vitamin A deficiency, such as prematurity. The aim of this work was to evaluate the vitamin A concentration in preterm and term lactating women and newborns by determination of retinol in maternal serum, umbilical cord serum and breast milk collected until 72 hours postpartum. 182 mothers were recruited and divided into preterm group (GPT; n = 118) and term group (GT, n = 64). In preterm group were also analyzed transition milk (7th-15th day; n = 68) and mature milk (30th-55th day; n = 46) samples. Retinol was analyzed by high-performance liquid chromatography (HPLC). Maternal retinol concentration in serum was 48.6 ± 12.3 µg/dL in GPT and 42.8 ± 16.3 µg/dL in the GT (p <0.01). Cord serum retinol was 20.4 ± 7.4 µg/dL in GPT and 23.2 ± 7.6 µg/dL in GT (p> 0.05). Among newborns, 43% of premature and 36% of term had low levels of serum retinol in umbilical cord (<20 µg/dL). In colostrum, the retinol in preterm and term groups had an average of 100.8 ± 49.0 µg/dL and 127.5 ± 65.1 µg/dL, respectively (p <0.05). The retinol average in preterm milk increased to 112.5 ± 49.7 µg/dL in transition phase and decreased to 57.2 ± 23.4 µg/dL in mature milk, differing significantly in all stages (p <0.05). When comparing with the recommendation of vitamin A intake (400 µg/day) GT colostrum reached the recommendation for infants, but in GPT the recommendation was not achieved at any stage. Mothers of premature infants had higher serum retinol than mothers at term; however, this was not reflected in serum retinol of umbilical cord, since premature had lower concentration of retinol. Such condition can be explained due to lower maternal physiological hemodilution and placental transfer of retinol to the fetus during preterm gestation. Comparison of retinol in colostrum showed lower concentrations in GPT; however the transition phase there was a significant increase of retinol content released by the mammary gland of preterm mothers. This situation highlights a specific physiological adaptation of prematurity, likely to more contribute to formation of hepatic reserves of retinol in premature infants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are non-hematopoietic multipotent stem cells capable to self-renew and differentiate along different cell lineages. MSCs can be found in adult tissues and extra embryonic tissues like the umbilical cord matrix/Wharton’s Jelly (WJ). The latter constitute a good source of MSCs, being more naïve and having a higher proliferative potential than MSCs from adult tissues like the bone marrow, turning them more appealing for clinical use. It is clear that MSCs modulate both innate and adaptive immune responses and its immunodulatory effects are wide, extending to T cells and dendritic cells, being therapeutically useful for treatment of immune system disorders. Mechanotransduction is by definition the mechanism by which cells transform mechanical signals translating that information into biochemical and morphological changes. Here, we hypothesize that by culturing WJ-MSCs on distinct substrates with different stiffness and biochemical composition, may influence the immunomodulatory capacity of the cells. Here, we showed that WJ-MSCs cultured on distinct PDMS substrates presented different secretory profiles from cells cultured on regular tissue culture polystyrene plates (TCP), showing higher secretion of several cytokines analysed. Moreover, it was also shown that WJ-MSCs cultured on PDMS substrates seems to possess higher immunomodulatory capabilities and to differentially regulate the functional compartments of T cells when compared to MSCs maintained on TCP. Taken together, our results suggest that elements of mechanotransduction seem to be influencing the immunomodulatory ability of MSCs, as well as their secretory profile. Thus, future strategies will be further explored to better understand these observation and to envisage new in vitro culture conditions for MSCs aiming at distinct therapeutic approaches, namely for immune-mediated disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human mesenchymal stem cells (MSC) are powerful sources for cell therapy in regenerative medicine. The long time cultivation can result in replicative senescence or can be related to the emergence of chromosomal alterations responsible for the acquisition of tumorigenesis features in vitro. In this study, for the first time, the expression profile of MSC with a paracentric chromosomal inversion (MSC/inv) was compared to normal karyotype (MSC/n) in early and late passages. Furthermore, we compared the transcriptome of each MSC in early passages with late passages. MSC used in this study were obtained from the umbilical vein of three donors, two MSC/n and one MSC/inv. After their cryopreservation, they have been expanded in vitro until reached senescence. Total RNA was extracted using the RNeasy mini kit (Qiagen) and marked with the GeneChip ® 3 IVT Express Kit (Affymetrix Inc.). Subsequently, the fragmented aRNA was hybridized on the microarranjo Affymetrix Human Genome U133 Plus 2.0 arrays (Affymetrix Inc.). The statistical analysis of differential gene expression was performed between groups MSC by the Partek Genomic Suite software, version 6.4 (Partek Inc.). Was considered statistically significant differences in expression to p-value Bonferroni correction ˂.01. Only signals with fold change ˃ 3.0 were included in the list of differentially expressed. Differences in gene expression data obtained from microarrays were confirmed by Real Time RT-PCR. For the interpretation of biological expression data were used: IPA (Ingenuity Systems) for analysis enrichment functions, the STRING 9.0 for construction of network interactions; Cytoscape 2.8 to the network visualization and analysis bottlenecks with the aid of the GraphPad Prism 5.0 software. BiNGO Cytoscape pluggin was used to access overrepresentation of Gene Ontology categories in Biological Networks. The comparison between senescent and young at each group of MSC has shown that there is a difference in the expression parttern, being higher in the senescent MSC/inv group. The results also showed difference in expression profiles between the MSC/inv versus MSC/n, being greater when they are senescent. New networks were identified for genes related to the response of two of MSC over cultivation time. Were also identified genes that can coordinate functional categories over represented at networks, such as CXCL12, SFRP1, xvi EGF, SPP1, MMP1 e THBS1. The biological interpretation of these data suggests that the population of MSC/inv has different constitutional characteristics, related to their potential for differentiation, proliferation and response to stimuli, responsible for a distinct process of replicative senescence in MSC/inv compared to MSC/n. The genes identified in this study are candidates for biomarkers of cellular senescence in MSC, but their functional relevance in this process should be evaluated in additional in vitro and/or in vivo assays

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUMO: A geleia de Wharton é uma fonte de células tronco mesenquimais (CTMs) que ainda não havia sido testada para a produção de embriões bovinos por transferência nuclear (TN). O objetivo deste estudo foi isolar, caracterizar e testar as CTMs derivadas da geleia de Wharton para produção de embriões e gestações por transferência nuclear em bovinos. O cordão umbilical foi coletado durante o nascimento e as células derivadas da geleia de Wharton (CGWs) foram isoladas por explante e cultivadas em Dulbecco?s Modified Eagle Medium. Fibroblastos (FB) da pele foram isolados após 6 meses de vida. As análises morfológicas foram realizadas pelas microscopias de campo claro e eletrônica de varredura durante o cultivo celular. Caracterização fenotípica e genotípica por citometria de fluxo, imunocitoquímica, RT-PCR e indução da diferenciação em linhagens celulares foi realizada com as CGWs. No procedimento de TN, ovócitos no estágio de metáfase II foram enucleados usando micromanipuladores, fusionados com CGWs ou FB e então ativados artificialmente. Micrografias de microscopia de varredura revelaram que CGWs tiveram forma variada sob cultivo. Os marcadores mesenquimais de CTMs (CD29+, CD73+, CD90+ and CD105+) foram expressos em cultura de CGWs bovina, como evidenciado por citometria de fluxo, imunocitoquímica e RT-PCR. Quando induzidas, estas células diferenciaram-se em osteócitos, condrócitos e adipócitos. Após classificação, as CGWs foram utilizadas na TN. A taxa de formação de blastocistos por TN com CGWs no sétimo dia de cultivo foi de 25,80±0,03%, similar a produção de blastócitos por TN com fibroblastos de pele (19,00±0,07). Gestações foram obtidas e mostraram que CGWs constituem um novo tipo celular para ser usado na clonagem animal. ABSTRACT: Wharton?s jelly is a source of mesenchymal stem cells (MSCs) that had not yet been tested for bovine embryo production by nuclear transfer (NT). Thus, the objective of this study was to isolate, characterize and test MSCs derived from Wharton?s jelly for embryo and pregnancy production by NT in cattle. The umbilical cord was collected during calving and cells derived from Wharton?s jelly (WJCs) were isolated by explant and cultured in Dulbecco?s Modified Eagle Medium. Skin Fibroblasts (FB) were isolated after 6 months of life. Morphological analysis was performed by bright field and scanning electron microscopy (SEM) during cell culture. Phenotypic and genotypic characterization by flow cytometry, immunocytochemistry, RT-PCR and differentiation induction in cell lineages were performed for WJC. In the NT procedure, oocytes at the arrested metaphase II stage were enucleated using micromanipulators, fused with WJCs or FB and later activated artificially. SEM micrographs revealed that WJCs have variable shape under culture. Mesenchymal markers of MSCs (CD29+, CD73+, CD90+ and CD105+) were expressed in bovine-derived WJC cultures, as evidenced by flow cytometry, immunocytochemistry and RT-PCR. When induced, these cells differentiated into osteocytes, chondrocytes and adipocytes. After classification, the WJCs were used in NT. Blastocyst formation rate by NT with WJCs at day 7 was 25.80±0.03%, similar to blatocyst rate with NT using skin fibroblasts (19.00±0.07%). Pregnancies were obtained and showed that WJCs constitute a new cell type for use in animal cloning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The canine model provides a large animal system to evaluate many treatment modalities using stem cells (SCs). However, only bone marrow ( BM) protocols have been widely used in dogs for preclinical approaches. BM donation consists of an invasive procedure and the number and differentiation potential of its mesenchymal stem cells (MSCs) decline with age. More recently, umbilical cord was introduced as an alternative source to BM since it is obtained from a sample that is routinely discarded. Here, we describe the isolation of MSCs from canine umbilical cord vein (cUCV). These cells can be obtained from every cord received and grow successfully in culture. Their multipotent plasticity was demonstrated by their capacity to differentiate in adipocytic, chondrocytic, and osteocytic lineages. Furthermore, our results open possibilities to use cUCV cells in preclinical trials for many well-characterized canine model conditions homologs to human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Umbilical cord mesenchymal stromal cells (MSC) have been widely investigated for cell-based therapy studies as an alternative source to bone marrow transplantation. Umbilical cord tissue is a rich source of MSCs with potential to derivate at least muscle, cartilage, fat, and bone cells in vitro. The possibility to replace the defective muscle cells using cell therapy is a promising approach for the treatment of progressive muscular dystrophies (PMDs), independently of the specific gene mutation. Therefore, preclinical studies in different models of muscular dystrophies are of utmost importance. The main objective of the present study is to evaluate if umbilical cord MSCs have the potential to reach and differentiate into muscle cells in vivo in two animal models of PMDs. In order to address this question we injected (1) human umbilical cord tissue (hUCT) MSCs into the caudal vein of SJL mice; (2) hUCT and canine umbilical cord vein (cUCV) MSCs intra-arterially in GRMD dogs. Our results here reported support the safety of the procedure and indicate that the injected cells could engraft in the host muscle in both animal models but could not differentiate into muscle cells. These observations may provide important information aiming future therapy for muscular dystrophies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Extrahepatic portal vein thrombosis (EHPVT) is an important cause of portal hypertension in children. Rex shunt has been used successfully to treat these patients. Methods: We report our experience in 19 infants and children (5 months to 14 years) with HPVT eligible for a mesenteric-portal surgical shunt with left internal jugular vein autograft. Eight children had idiopathic EHPVT, nine had post-umbilical catheterization EHPVT, one had portal vein agenesis, and one had posttransplant EHPVT. Results: It was possible to perform the Rex shunt in all patients except for 8 of 9 cases in the post-umbilical catheterization EHPVT group. A Warren procedure was performed in 4 of those patients and a proximal splenorenal shunt in 1. Current follow-up ranges from 3 to 26 months. Shunt thrombosis occurred in one patient with portal vein agenesis and associated cardiac anomaly. Portal hypertension has significantly improved after surgery. None of our patients have experienced new bleeding episodes until now. Conclusions: The Rex shunt should be considered in the treatment of children with idiopathic EHPVT experiencing repeated gastrointestinal bleeding episodes refractory to endoscopic treatment. Nevertheless, the role of this operation for children with post-umbilical catheterization EHPVT is yet to be clearly evaluated. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.