995 resultados para Copper compounds
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study was carried out to investigate the effects of copper (Cu) intake on lipid profile, oxidative stress and tissue damage in normal and in diabetic condition. Since diabetes mellitus is a situation of high-risk susceptibility to toxic compounds, we examined potential early markers of Cu excess in diabetic animals. Male Wistar rats, at 60-days-old were divided into six groups of eight rats each. The control(C) received saline from gastric tube, the no-diabetic(Cu-10), treated with 10 mg/kg of Cu(Cu(++)-CuSO(4), gastric tube), no-diabetic with Cu-60mg/kg(Cu-60), diabetic(D), diabetic low-Cu(DCu-10) and diabetic high-Cu(DCu-60). Diabetes was induced by an ip injection of streptozotocin (60mg/kg). After 30 days of treatments, no changes we're observed in serum lactate dehydrogenase, alanine transaminase and alkaline phosphatase; indicating no adverse effects on cardiac and hepatic tissues. D-rats had glucose intolerance and dyslipidemic profile. Cholesterol and LDL-cholesterol were higher in Cu-60 and DCu-60 than in C, Cu-10 and D and DCu-10 groups respectively. Cu-60 rats had higher lipid hydroperoxide (HP) and lower superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) serum activities than C and Cu-10 rats. LH was increased and GSH-Px was decreased, while no alterations were observed in SOD and catalase in serum of DCu-60 animals. DCu-60 rats had increased urinary glucose, creatinine and albumin. In conclusion, Cu intake at high concentration induced adverse effects on lipid profile, associated with oxidative stress and diminished activities of antioxidant enzymes. Diabetic animals were more susceptible to copper toxicity. High Cu intake induced dyslipidemic profile, oxidative stress and kidney dysfunction in diabetic condition. Copper renal toxicity was associated with oxidative stress and reduction at least, one of the antioxidant enzymes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pseudohalide complexes of copper(II) with aliphatic bidentate amines, [Cu(N-3)(2)(N,N-diEten)](2) 1, [Cu(NCO)(2)(N,N-diEten)](2) 2, [Cu(NCO)(2)(N,N-diMeen)](2) 3, [Cu(N-3)(NCS)(N,N'-diMeen)](2) 4 and [Cu(N-3)(NCO)(N,N-diMeen)](2) 5 (N,N-diEten=N,N-diethylethylenediamine; N,N-diMeen=N,N- dimethyl-ethylenediamine and N,N'-diMeen = N,N'-dimethylethylenediamine), were prepared, characterized and their thermal behavior was investigated by TG curves. According to thermal analysis and X-ray diffraction patterns all compounds decomposed giving copper(II) oxide as final product. The mechanisms of decomposition were proposed and an order of thermal stability was established.
Resumo:
Synthesis, characterization and thermal behavior of four compounds that have the general formula [Cu{Pd(CN)(4)}(L)(x)](n), in which en = 1,2-diaminoethane and pn = 1,3-diaminopropane (L = en, x = 1 (I); L = pn, x = 1 (II); L = en, x = 2 (III); L = pn, x = 2 (IV)) were described in this work. The complexes were studied by elemental analysis, infrared spectroscopy (IR), differential thermal analysis (DTA) and thermogravimetry (TG) and the residues of the thermal decomposition were characterized by X-ray powder diffraction and found as a mixture of CuO and PdO. The stoichiometry of the compounds was established via thermogravimetric and elemental analyses and their structures were proposed as coordination polymers based on their infrared spectra. The following thermal stability sequence was found: IV < I=II < III.
Resumo:
The compounds [Cu(N-3)(NSC)(tmen)](n) (1), [Cu(N-3)(NCO)(tmen)](n) (2) and [Cu(N-3)(NCO)(tmen)](2) (3) (tmen = N,N,N',N'-tetramethylethylenediamine) were synthesized and studied by i.r. spectroscopy. Single crystals of compounds (1) and (3) were obtained and characterized by X-ray diffraction. The structure of compound (1) consists of neutral chains of copper(II) ions bridged by a single azido ligand showing the asymmetric end-to-end coordination fashion. Each copper ion is also surrounded by the other three nitrogen atoms: two from one N,N,N',N'-tetramethylethylenediamine and one from a terminal bonded thiocyanate group. Compound (2) decomposes slowly in acetone and the product formed [Cu(N-3)(NCO)(tmen)](2) (3) crystallizes in the monoclinic system (P2(1)). The structure of (3) consists of dimeric units in which the Cu atoms are penta-coordinated and connected by p(1,3) bridging azido and cyanate ligands. In both cases the five coordinated atoms give rise to a slightly distorted square-based pyramid coordination geometry at each copper ion. The thermal behavior of [Cu(N-3)(NSC)(tmen)](n) (1) and [Cu(N-3)(NCO)(tmen)](n) (2) were investigated and the final decomposition products were identified by X-ray powder diagrams.
Resumo:
The reaction of Cu(NO3)(2).3H(2)O with 1,3-propanediamine (pn), in the presence of NaN3, afforded a 1:1 co-crystal formed by [Cu(NO3)(2)(pn)(2)] and [Cu(N-3)(NO3)(pn)(2)] (1 and 2), which were characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. In both compounds, the copper(II) centers are in a distorted octahedral environment, formed by four N atoms of two bidentate pn ligands in the basal plane, whereas the axial bonds are formed by two O atoms from the nitrate ligands in 1 and one O atom from the nitrate ligand and one N atom from the azide ion in 2. The asymmetric unit of the crystal consists of two crystallographically independent 1 and 2 complexes, which are held together in a 3D network by a series of N - H center dot center dot center dot O and N - H center dot center dot center dot N hydrogen bonds, as well C - H center dot center dot center dot O interactions. New supramolecular synthons are identified by the occurrence of two geometrically distinct molecular recognition patterns involving the NO3- ion and amino groups from pn ligands.
Resumo:
Tetrafluorborate copper(I) complexes containing acetonitrile, triphenylphosphine, 1,10-phenanthroline, 2,2′-bipyridine and 2-quinolinethiol have been prepared in order to study their thermal stabilities as a function of the ligands present. The characterization of the above compounds was carried out by elemental analysis and IR spectroscopy. Their thermal behaviour has been investigated and the final products were identified by X-ray powder diagrams. © 1995.
Resumo:
The complexes: [Cu(N 3) 2(N,N-diEten)] 2, [Cu(N 3) 2(tmeen)] 2, [Cu(N 3)(NCO)(N,N-diEten)] 2, [Cu(N 3) 2(N,N′-diMeen)] 2 and [Cu(N 3)(NCO)(tmeen)] 2 were prepared, characterized and their electrochemical behavior was investigated by cyclic voltammetry and controlled potential electrolysis. Cyclic voltammograms for all complexes studied are similar and exhibit one pair of current peaks in the range of -0.65 to +0.0 V. The number of electrons obtained from controlled potential electrolysis at ca. -0.55 V for all compounds was 1.8 ≤ n ≤ 2.1, indicating that both copper(II) metallic centres in the molecule were reduced to copper (I). Comparing the peak potential values for these complexes one can observe that the redox process corresponding to copper(II)/copper(I) couple is slightly influenced by the σ-basicity of the ligands. © 1997 Soc. Bras. Química.
Resumo:
The freshwater planktonic alga Kirchneriella aperta was grown in batch cultures to stationary growth phase. Copper and lead complexation properties of the exudate from stationary and exponential growth phases were determined by titrations monitored by ion-selective electrodes. Molecular weight fractionation dialysis) and analysis of the titration data (Scatchard Plot) revealed that K. aperta releases metal-complexing ligands. Copper is associated with low and high molecular weight compounds, whereas lead forms complexes with only high molecular weight compounds. Gas-liquid chromatography showed that mannose and rhamnose make up 74% of the total high molecular weight organic material, with uronic acids present at 19%.
Resumo:
This work studied the influence of the rare earth (Ce3+ and Ce4+) elements concentration in polysiloxane flints deposited on copper by dip-coating process, and evaluated their resistance in a 3.5 wt.% NaCl medium. Classical electrochemistry techniques were used as open circuit potential, polarization curves and electrochemical impedance spectroscopy. The results revealed that by adding low concentration of Ce4+ ions, the coating prevents the electrolyte uptake any longer retarding the substrate degradation consequently. ©The Electrochemical Society.
Resumo:
Synthesis, characterization and thermal decomposition of bivalent transition metal α-hydroxyisobutyrates, M(C4H7O 3)2·nH2O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behaviour of α-hydroxyisobutyric acid and its sodium salt were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), infrared spectroscopy (FTIR), TG-DSC coupled to FTIR, elemental analysis and complexometry. All the compounds were obtained as dihydrated, except the copper one which was obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occurs in a single or two steps and the final residue up to 235 C (Mn), 300 C (Fe), 305 C (Co), 490 C (Ni), 260 C (Cu) and 430 C (Zn) is Mn2O3, Fe2O3, Co3O 4, NiO, CuO and ZnO, respectively. The results also provided information concerning the ligand's denticity and identification of the gaseous products evolved during the thermal decomposition of these compounds. Copyright © 2013 Published by Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)