912 resultados para Conservation planning
Resumo:
With marine biodiversity conservation the primary goal for reserve planning initiatives, a site's conservation potential is typically evaluated on the basis of the biological and physical features it contains. By comparison, socio-economic information is seldom a formal consideration of the reserve system design problem and generally limited to an assessment of threats, vulnerability or compatibility with surrounding uses. This is perhaps surprising given broad recognition that the success of reserve establishment is highly dependent on widespread stakeholder and community support. Using information on the spatial distribution and intensity of commercial rock lobster catch in South Australia, we demonstrate the capacity of mathematical reserve selection procedures to integrate socio-economic and biophysical information for marine reserve system design. Analyses of trade-offs highlight the opportunities to design representative, efficient and practical marine reserve systems that minimise potential loss to commercial users. We found that the objective of minimising the areal extent of the reserve system was barely compromised by incorporating economic design constraints. With a small increase in area (< 3%) and boundary length (< 10%), the economic impact of marine reserves on the commercial rock lobster fishery was reduced by more than a third. We considered also how a reserve planner might prioritise conservation areas using information on a planning units selection frequency. We found that selection frequencies alone were not a reliable guide for the selection of marine reserve systems, but could be used with approaches such as summed irreplaceability to direct conservation effort for efficient marine reserve design.
Resumo:
We compared within-population variability and degree of population differentiation for neutral genetic markers (RAPDS) and eight quantitative traits in Central American populations of the endangered tree, Cedrela odorata. Whilst population genetic diversity for neutral markers (Shannon index) and quantitative traits (heritability, coefficient of additive genetic variation) were uncorrelated, both marker types revealed strong differentiation between populations from the Atlantic coast of Costa Rica and the rest of the species' distribution. The degree of interpopulation differentiation was higher for RAPD markers (F-ST 0.67 for the sampled Mesoamerican range) than for quantitative traits (Q(ST) = 0.30). Hence, the divergence in quantitative traits was lower than could have been achieved by genetic drift alone, suggesting that balancing selection for similar phenotypes in different populations of this species. Nevertheless, a comparison of pair-wise estimates of population differentiation in neutral genetic markers and quantitative traits revealed a strong positive correlation (r = 0.66) suggesting that, for C. odorata, neutral marker divergence could be used as a surrogate for adaptive gene divergence for conservation planning. The utility of this finding and suggested further work are discussed.
Resumo:
Tropical deforestation is the major contemporary threat to global biodiversity, because a diminishing extent of tropical forests supports the majority of the Earth's biodiversity. Forest clearing is often spatially concentrated in regions where human land use pressures, either planned or unplanned, increase the likelihood of deforestation. However, it is not a random process, but often moves in waves originating from settled areas. We investigate the spatial dynamics of land cover change in a tropical deforestation hotspot in the Colombian Amazon. We apply a forest cover zoning approach which permitted: calculation of colonization speed; comparative spatial analysis of patterns of deforestation and regeneration; analysis of spatial patterns of mature and recently regenerated forests; and the identification of local-level hotspots experiencing the fastest deforestation or regeneration. The colonization frontline moved at an average of 0.84 km yr(-1) from 1989 to 2002, resulting in the clearing of 3400 ha yr(-1) of forests beyond the 90% forest cover line. The dynamics of forest clearing varied across the colonization front according to the amount of forest in the landscape, but was spatially concentrated in well-defined 'local hotspots' of deforestation and forest regeneration. Behind the deforestation front, the transformed landscape mosaic is composed of cropping and grazing lands interspersed with mature forest fragments and patches of recently regenerated forests. We discuss the implications of the patterns of forest loss and fragmentation for biodiversity conservation within a framework of dynamic conservation planning.
Resumo:
Cities have a major impact on Australian landscapes, especially in coastal regions, to the detriment of native biodiversity. Areas suitable for urban development often coincide with those areas that support high levels of species diversity and endemism. However, there is a paucity of reliable information available to guide urban conservation planning and management, especially regarding the trade-off between investing in protecting and restoring habitat at the landscape level, and investing in programmes to maintain the condition of remnant vegetation at the local (site) level. We review the literature on Australian urban ecology, focusing on urban terrestrial and aquatic vertebrate and invertebrate fauna. We identify four main factors limiting our knowledge of urban fauna: (i) a lack of studies focusing at multiple ecological levels; (ii) a lack of multispecies studies; (iii) an almost total absence of long-term (temporal) studies; and (iv) a need for stronger integration of research outcomes into urban conservation planning and management. We present a set of key principles for the development of a spatially explicit, long-term approach to urban fauna research. This requires an understanding of the importance of local-level habitat quality and condition relative to the composition, configuration and connectivity of habitats within the larger urban landscape. These principles will ultimately strengthen urban fauna management and conservation planning by enabling us to prioritize and allocate limited financial resources to maximize the conservation return.
Resumo:
Deforestation often occurs as temporal waves and in localized fronts termed 'deforestation hotspots' driven by economic pulses and population pressure. Of particular concern for conservation planning are 'biodiversity hotspots' where high concentrations of endemic species undergo rapid loss and fragmentation of habitat. We investigate the deforestation process in Caqueta, a biodiversity hotspot and major colonization front of the Colombian Amazon using multi-temporal satellite imagery of the periods 1989-1996-1999-2002. The probabilities of deforestation and regeneration were modeled against soil fertility, accessibility and neighborhood terms, using logistic regression analysis. Deforestation and regeneration patterns and rates were highly variable across the colonization front. The regional average annual deforestation rate was 2.6%, but varied locally between -1.8% (regeneration) and 5.3%, with maximum rates in landscapes with 40-60% forest cover and highest edge densities, showing an analogous pattern to the spread of disease. Soil fertility and forest and secondary vegetation neighbors showed positive and significant relationships with the probability of deforestation. For forest regeneration, soil fertility had a significant negative effect while the other parameters were marginally significant. The logistic regression models across all periods showed a high level of discrimination power for both deforestation and forest regeneration, with ROC values > 0.80. We document the effect of policies and institutional changes on the land clearing process, such as the failed peace process between government and guerillas in 1999-2002, which redirected the spread of deforestation and increased forest regeneration. The implications for conservation in biologically rich areas, such as Caqueta are discussed. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In biologically mega-diverse countries that are undergoing rapid human landscape transformation, it is important to understand and model the patterns of land cover change. This problem is particularly acute in Colombia, where lowland forests are being rapidly cleared for cropping and ranching. We apply a conceptual model with a nested set of a priori predictions to analyse the spatial and temporal patterns of land cover change for six 50-100 km(2) case study areas in lowland ecosystems of Colombia. Our analysis included soil fertility, a cost-distance function, and neighbourhood of forest and secondary vegetation cover as independent variables. Deforestation and forest regrowth are tested using logistic regression analysis and an information criterion approach to rank the models and predictor variables. The results show that: (a) overall the process of deforestation is better predicted by the full model containing all variables, while for regrowth the model containing only the auto-correlated neighbourhood terms is a better predictor; (b) overall consistent patterns emerge, although there are variations across regions and time; and (c) during the transformation process, both the order of importance and significance of the drivers change. Forest cover follows a consistent logistic decline pattern across regions, with introduced pastures being the major replacement land cover type. Forest stabilizes at 2-10% of the original cover, with an average patch size of 15.4 (+/- 9.2) ha. We discuss the implications of the observed patterns and rates of land cover change for conservation planning in countries with high rates of deforestation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Across North America, grassland songbirds have undergone steep population declines over recent decades, commonly attributed to agricultural intensification. Understanding the potential interactions between the impacts of climate change on the future distributions of these species and the availability of suitable vegetation for nesting can support improved risk assessments and conservation planning for this group of species. We used North American bioclimatic niche models to examine future changes in suitable breeding climate for 15 grassland songbird species at their current northern range limits along the boreal forest–prairie ecotone in Alberta, Canada. Our climate suitability projections, combined with the current distribution of native and tame pasture and cropland in Alberta, suggest that some climate-mediated range expansion of grassland songbirds in Alberta is possible. For six of the eight species projected to experience expansions of suitable climate area in Alberta, this suitable climate partly overlaps the current distribution of suitable land cover. Additionally, for more than half of the species examined, most of the area of currently suitable climate was projected to remain suitable to the end of the century, highlighting the importance of Alberta for the long-term persistence of these species. Some northern prairie-endemic species exhibited substantial projected northward shifts of both the northern and southern edges of the area of suitable climate. Baird’s Sparrow (Ammodramus bairdii) and Sprague’s Pipit (Anthus spragueii), both at-risk grassland specialists, are predicted to have limited climate stability within their current ranges, and their expansion into new areas of suitable climate may be limited by the availability of suitable land cover. Our results highlight the importance of the preservation and restoration of remaining suitable grassland habitat within areas of projected climate stability and beyond current northern range limits for the long-term persistence of many grassland songbird species in the face of climate change.
Resumo:
The need for continuous recording rain gauges makes it difficult to determine the rainfall erosivity factor (R-factor) of the (R)USLE model in areas without good temporal data coverage. In mainland Spain, the Nature Conservation Institute (ICONA) determined the R-factor at few selected pluviographs, so simple estimates of the R-factor are definitely of great interest. The objectives of this study were: (1) to identify a readily available estimate of the R-factor for mainland Spain; (2) to discuss the applicability of a single (global) estimate based on analysis of regional results; (3) to evaluate the effect of record length on estimate precision and accuracy; and (4) to validate an available regression model developed by ICONA. Four estimators based on monthly precipitation were computed at 74 rainfall stations throughout mainland Spain. The regression analysis conducted at a global level clearly showed that modified Fournier index (MFI) ranked first among all assessed indexes. Applicability of this preliminary global model across mainland Spain was evaluated by analyzing regression results obtained at a regional level. It was found that three contiguous regions of eastern Spain (Catalonia, Valencian Community and Murcia) could have a different rainfall erosivity pattern, so a new regression analysis was conducted by dividing mainland Spain into two areas: Eastern Spain and plateau-lowland area. A comparative analysis concluded that the bi-areal regression model based on MFI for a 10-year record length provided a simple, precise and accurate estimate of the R-factor in mainland Spain. Finally, validation of the regression model proposed by ICONA showed that R-ICONA index overpredicted the R-factor by approximately 19%.
Resumo:
Understanding how biodiversity spatially distribute over both the short term and long term, and what factors are affecting the distribution, are critical for modeling the spatial pattern of biodiversity as well as for promoting effective conservation planning and practices. This dissertation aims to examine factors that influence short-term and long-term avian distribution from the geographical sciences perspective. The research develops landscape level habitat metrics to characterize forest height heterogeneity and examines their efficacies in modelling avian richness at the continental scale. Two types of novel vegetation-height-structured habitat metrics are created based on second order texture algorithms and the concepts of patch-based habitat metrics. I correlate the height-structured metrics with the richness of different forest guilds, and also examine their efficacies in multivariate richness models. The results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of two forest bird guilds. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. The second and the third projects focus on analyzing centroids of avian distributions, and testing hypotheses regarding the direction and speed of these shifts. I first showcase the usefulness of centroids analysis for characterizing the distribution changes of a few case study species. Applying the centroid method on 57 permanent resident bird species, I show that multi-directional distribution shifts occurred in large number of studied species. I also demonstrate, plain birds are not shifting their distribution faster than mountain birds, contrary to the prediction based on climate change velocity hypothesis. By modelling the abundance change rate at regional level, I show that extreme climate events and precipitation measures associate closely with some of the long-term distribution shifts. This dissertation improves our understanding on bird habitat characterization for species richness modelling, and expands our knowledge on how avian populations shifted their ranges in North America responding to changing environments in the past four decades. The results provide an important scientific foundation for more accurate predictive species distribution modeling in future.
Resumo:
Wydział Biologii
Resumo:
We modelled the distributions of two toads (Bufo bufo and Epidalea calamita) in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourabilitymodel based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation “A and not B”) were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.
Resumo:
Aim Chorological relationships describe the patterns of distributional overlap among species. In addition to revealing biogeographical structure, the resulting clusters of species with similar geographical distributions can serve as natural units in conservation planning. Here, we assess the extent to which temporal, methodological and taxonomical differences in the source of species’ distribution data can affect the relationships that are found.
Resumo:
Species occurrence and abundance models are important tools that can be used in biodiversity conservation, and can be applied to predict or plan actions needed to mitigate the environmental impacts of hydropower dams. In this study our objectives were: (i) to model the occurrence and abundance of threatened plant species, (ii) to verify the relationship between predicted occurrence and true abundance, and (iii) to assess whether models based on abundance are more effective in predicting species occurrence than those based on presence–absence data. Individual representatives of nine species were counted within 388 randomly georeferenced plots (10 m × 50 m) around the Barra Grande hydropower dam reservoir in southern Brazil. We modelled their relationship with 15 environmental variables using both occurrence (Generalised Linear Models) and abundance data (Hurdle and Zero-Inflated models). Overall, occurrence models were more accurate than abundance models. For all species, observed abundance was significantly, although not strongly, correlated with the probability of occurrence. This correlation lost significance when zero-abundance (absence) sites were excluded from analysis, but only when this entailed a substantial drop in sample size. The same occurred when analysing relationships between abundance and probability of occurrence from previously published studies on a range of different species, suggesting that future studies could potentially use probability of occurrence as an approximate indicator of abundance when the latter is not possible to obtain. This possibility might, however, depend on life history traits of the species in question, with some traits favouring a relationship between occurrence and abundance. Reconstructing species abundance patterns from occurrence could be an important tool for conservation planning and the management of threatened species, allowing scientists to indicate the best areas for collection and reintroduction of plant germplasm or choose conservation areas most likely to maintain viable populations.