994 resultados para Citrate precursor method
Resumo:
Strontium zirconate (SrZrO3) powders have been synthesized by the polymeric precursor method after heat treatment at different temperatures for 2 h in oxygen atmosphere. The decomposition of precursor powder was followed by thermogravimetric analysis, X-ray diffraction (XRD) and Fourier transform Raman (FT-Raman). The UV-vis absorption spectroscopy measurements suggested the presence of intermediary energy levels in the band gap of structurally disordered powders. XRD, Rietveld refinement and FT-Raman revealed that the powders are free of secondary phases and crystallizes in the orthorhombic structure. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Ba(Zr0.25Ti0.75)O-3(BZT) thin films prepared by the polymeric precursor method (PPM) were annealed at 500, 600, and 700 degrees C for 4h. All films crystallized in the perovskite structure present a crack-free microstructure. Dielectric properties of the BZT thin films were investigated as a function of frequency and applied voltage. The dielectric constant of the films were 36, 152 and 145 at 1 kHz, while the dielectric loss were 0.08, 0.08, and 0.12 at 1 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ferroelectric SrBi4Ti4O15 thin films were successfully prepared on a Pt(111)/Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. X-ray diffraction patterns of the films indicate that they are polycrystalline in nature. Atomic force microscopy (AFM) analyses showed that the surface of these films is smooth, dense and crack-free with low surface roughness (6.4 nm). At room temperature and at a frequency of 1 MHz, the dielectric constant and the dissipation factor were, respectively, 150 and 0.022. The C-V characteristics of perovskite thin film prepared at low temperature show normal ferrolectric behaviour. The remanent polarization and coercive field for the films deposited were 5.4 mu C/cm(2) and 8 5 kV/cm, respectively. All the capacitors showed good polarization fatigue characteristics at least up to 1 x 10(10) bipolar pulse cycles indicating that SrBi4Ti4O15 thin films can be a promising material for use in nonvolatile memories. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
PLZT thin films were prepared by a dip coating process using Pechini's method, also known as polymeric precursor method. The PLZT solution was obtained from a mixture of the individual cation solutions and the process to prepare each solution is based on metallic citrate polymerization. The viscosity of the PLZT solution was adjusted at 40 cP while the ionic concentration was adjusted at 0.1 M. PLZT solutions were deposited on silicon (100) and platinum coated silicon (100) substrates with withdrawal speed at 5 mm/min. The coated substrates were thermally treated with a heating rate of 1 degreesC/min up to 300 degreesC and 5 degreesC/min up to 650 degreesC in order to obtain homogeneous and cracks free films. The influence of oxygen flow on crystallization and morphology of PLZT (9/65/35) thin film is discussed. (C) 2002 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
Nanocrystalline ZrO2-12 mol % CeO2 powders were synthesized using a polymeric precursor method based on the Pechini process. X-ray diffraction (XRD) patterns showed that the method was effective to synthesize tetragonal zirconia single-phase. The mean crystallite size attained ranges from 6 to 15 nm. The BET surface areas were relatively high reaching 97 m(2)/g. Studies by nitrogen adsorption/desorption on powders, dilatometry of the compacts, and transmission electron microscopy (TEM) of the powders, were also developed to verify the particles agglomeration state. Both citric acid : ethylene glycol ratio and calcination temperature affected the powder morphology, which influenced the sinterability and microstructure of the sintered material, as showed by scanning electron microscopy (SEM). (C) 2001 Kluwer Academic Publishers.
Resumo:
Ferroelectric CaBi4Ti4O15 (CBTi144) thin films were deposited on Pt/Ti/SiO2/Si substrates by the polymeric precursor method. The films present a single phase of layered-structured perovskite with polar axis orientation after annealing at 700 degrees C for 2 h in static air and oxygen atmosphere. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. It is noted that the films annealed in static air showed good polarization fatigue characteristics at least up to 10(10) bipolar pulse cycles and excellent retention properties up to 10(4) s. on the other hand, oxygen atmosphere seems to be crucial in the decrease of both, fatigue and retention characteristics of the capacitors. Independently of the applied electric field, the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Single-phase perovskite 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) (PMN-PT) powders were prepared by using a Ti-modified columbite precursor (MNT) obtained by the polymeric precursor method. The innovation consists in the preparation of Ti-modified columbite in order to react directly with a stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. It has been shown that titanium oxide forms a solid solution with columbite (MN) and does not affect the obtaining of a single-phase columbite precursor. Thus, a high amount of perovskite phase can be obtained by reaction with PbO at 800 degreesC for 2 h. Effects of K and Li additives on the structure of MNT and PMN-PT were studied. X-ray diffraction studies were carried out to verify the phase formation at each processing step and these data were used for structural refinement by the Rietveld method. Both K and Li additives increase the crystallinity of MNT powders, being this effect more intense for the Li-doped samples. For PMN-PT samples the additives cause an insignificant decrease in the amount of perovskite phase. The morphology of the PMN-PT powder depends on the type of the additive. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Superconductor films of the BSCCO system have been grown by dip coating technique with good success. The chemical method allows us to grow high temperature superconductor thin films to get better control of stoichiometry, large areas and is cheaper than other methods. There is a great technological interest in growth oriented superconductor films due anisotropic characteristics of superconductor materials of high critical temperature, specifically the cuprates, as we know that the orientation may increase the electrical transport properties. Based on this, the polymeric precursor method has been used to obtain thin films of the BSCCO system. In this work we have applied that method together with the deposition technique known as dip coating to obtain Bi-based superconductor thin films, specifically, Bi1.6Pb0.4Sr2.0C2.0Cu3.0Ox+8, also known as 2223 phase with a critical temperature around 110 K. The films with multilayers have been grown on crystalline substrates of LaAlO3 and orientated (100) after being heat treated around 790 degrees C - 820 degrees C in lapse time of 1 hour in a controlled atmosphere. XRD measurements have shown the presence of a crystalline phase 2212 with a critical temperature around 85 K with (001) orientation, as well as a small fraction of 2223 phase. SEM has shown a low uniformity and some cracks that maybe related to the applied heat treatment. WDS has also been used to study the films composition. Different heat treatments have been used with the aim to increase the percentage of 2223 phase. Measurements of resistivity confirmed the presence of at least two crystalline phases, 2212 and 2223, with T-c around 85 K and 110 K, respectively.
Resumo:
The effect of lead excess on the pyrochlore-type formation in Pb(Mg1/3Nb2/3)O-3 (PMN) powders has been investigated. The polymeric precursor method was used in the synthesis of the columbite in association to the partial oxalate method to synthesize the PMN powder samples. Structure refinement of the columbite precursor and PMN powders was carried out using the Rietveld method. The quantitative phase analysis showed that the amount of perovskite phase is not affected by PbO excess, but a great excess drives the pyrochlore-type formation so that 3 wt.% of PbO causes the predominance of Mg-containing pyrochlore phase. Using the refined data obtained from the Rietveld refinement, the compositional fluctuation in the perovskite phase was calculated from Nb/Mg ratio values and Pb occupation factor. Mg inclusion occurs concomitant with Ph one into PMN perovskite phase and this effect is directed by PbO excess during powder synthesis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The controlled growth of SnO2 nanoparticles for gas sensor applications is reported by these authors. Nb2O5 additive is used to control nucleation and growth of the SnO2 (see Figure), which is synthesized by the polymeric precursor method. Preliminary gas sensing measurements are performed and it is demonstrated that the response time of the Nb2O5-doped SnO2 is faster than that of the undoped material.
Resumo:
A polymeric precursor method based on the Pechini process was successfully used to synthesize zirconia-12 mol% ceria ceramic powders, the influence of the main process variables (citric acid-ethylene glycol ratio, citric acid-total oxides ratio and calcination temperature) on phase formation and powder morphology (surface area and crystallite size) were investigated. The thermal decomposition behavior of the precursor is presented. X-ray diffraction (XRD) patterns of powders revealed a crystalline tetragonal zirconia single-phase, with crystallite diameter ranging from 6 to 15 nm. The BET surface areas were relatively high, reaching 95 m(2) g(-1) Nitrogen adsorption/desorption on the powders suggested that nonaggregated powders could be attained, depending on the synthesis conditions. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Stoichiometric CaWO4 and SrWO4 thin films were synthesized using a chemical solution processing, the so-called polymeric precursor method. In this soft chemical method, soluble precursors such as strontium carbonate, calcium carbonate and tungstic acid, as starting materials, were mixed in an aqueous solution. The thin films were deposited on glass substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Nucleation stages and surface morphology evolution of the thin films on glass substrates were studied by atomic force microscopy. The films nucleate at 300 degreesC, after the coalescence of small nuclei into larger grains yielding a homogeneous dense surface. XRD characterization of these films showed that the CaWO4 and SrWO4 phases crystallize at 400 degreesC from an inorganic amorphous phase. No intermediate crystalline phase was identified. The optical properties were also studied. It was found that CaWO4 and SrWO4 thin films have an optical band gap, E-gap=5.27 and 5.78 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity confirmed that this soft solution processing provides an inexpensive and environmentally friendly route for the preparation of CaWO4 and SrWO4 thin films. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The particle-growth kinetics of sodium niobate and zirconium titanate powders that were processed by the polymeric precursors method were studied. The growth kinetics that were studied for the particle, in the final stage of crystallization, showed that the growth process occurs in two different stages. For temperatures <800°C, the particle-growth mechanism is associated with surface diffusion, with an activation energy in the range of 40-80 KJ/mol. For temprratures >800°C, particle growth is controlled by densification of the nanometric particle cluster and by a neck-size-controlled particle-growth mechanism. The results suggest that this behavior was typical of the synthesis method, because two different polycation oxides presented the same behavior.
Resumo:
This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.