927 resultados para Burr grass
Resumo:
Florida’s large number of shallow lakes, warm climate and long growing season have contributed to the development of excessive growths of aquatic macrophytes that have seriously interfered with many water use activities. The introduction of exotic aquatic macrophyte species such as hydrilla ( Hydrilla verticillata ) have added significantly to aquatic plant problems in Florida lakes. The use of grass carp ( Ctenopharyngodon idella ) can be an effective and economical control for aquatic vegetation such as hydrilla. Early stocking rates (24 to 74 grass carp per hectare of lake area) resulted in grass carp consumption rates that vastly exceeded the growth rates of the aquatic plants and often resulted in the total loss of all submersed vegetation. This study looked at 38 Florida lakes that had been stocked with grass carp for 3 to 10 years with stocking rates ranging from < 1 to 59 grass carp per hectare of lake and 1 to 207 grass carp per hectare of vegetation to determine the long term effects of grass carp on aquatic macrophyte communities. The median PAC (percent area coverage) value of aquatic macrophytes for the study lakes after they were stocked with grass carp was 14% and the median PVI (percent volume infested) value of aquatic macrophytes was 2%. Only lakes stocked with less than 25 to 30 fish per hectare of vegetation tended to have higher than median PAC and PVI values. When grass carp are stocked at levels of > 25 to 30 fish per hectare of vegetation the complete control of aquatic vegetation can be achieved, with the exception of a few species of plants that grass carp have extreme difficulty consuming. If the management goal for a lake is to control some of the problem aquatic plants while maintaining a small population of predominately unpalatable aquatic plants, grass carp can be stocked at approximately 25 to 30 fish per hectare of vegetation.
Resumo:
2.4. The author may post the VoR version of the article (in PDF or HTML form) in the Institutional Repository of the institution in which the author worked at the time the article was first submitted, or (for appropriate journals) in PubMed Central or UK PubMed Central or arXiv, no sooner than one year after first publication of the article in the Journal, subject to file availability and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online edition of the Journal at Cambridge Journals Online.
Resumo:
High salinity estuaries in the southeastern U.S. have experienced increased inputs of contaminants from nonpoint source (NPS) urban runoff and decreases in habitat due to filling of wetlands and dock/bulkhead construction. Urbanization may pose significant risks to estuarine fauna, particularly crustaceans. The grass shrimp of the genus Palaemonetes, is one of the dominant species found in estuarine tidal creeks, accounting for greater than 50% of all macropelagic fauna on an annual basis. Spatial analytical and geographic information system techniques were used to determine which factors influenced the Palaemonetes population structures in a South Carolina bar-built estuary surrounded by urban development. Impacts from land use practices were investigated using concentric circular buffers around study sites. Factors investigated included sediment-associated polycyclic aromatic hydrocarbons concentration, land use classification, percent impervious surfaces, and other selected urban factors. Geographic information system and statistical modeling showed quantitative relationships between land use class and impacts on Palaemonetes density. The study suggests that habitat loss is a major factor influencing grass shrimp densities. Multiple regression modeling suggests a significant relationship between habitat alterations and Palaemonetes densities.
Resumo:
Grass shrimp, Palaemonetes pugio, are a common inhabitant of US East and Gulf coast salt marshes and are a food source for recreationally and economically important fish and crustacean species. Due to the relationship of grass shrimp with their ecosystem, any significant changes in grass shrimp population may have the potential to affect the estuarine system. Land use is a crucial concern in coastal areas where increasing development impacts the surrounding estuaries and salt marshes and has made grass shrimp population studies a logical choice to investigate urbanization effects. Any impact on tidal creeks will be an impact on grass shrimp populations and their associated micro-environment whether predator, prey or parasitic symbiont. Anthropogenic stressors introduced into the grass shrimp ecosystem may even change the intensity of infections from parasitic symbionts. An ectoparasite found on P. pugio is the bopyrid isopod Probopyrus pandalicola. Little is known about factors that may affect the occurrence of this isopod in grass shrimp populations. The goal was to analyze the prevalence of P. pandalicola in grass shrimp in relation to land use classifications, water quality parameters, and grass shrimp population metrics. Eight tidal creeks in coastal South Carolina were sampled monthly over a three year period. The occurrence of P. pandalicola ranged from 1.2% to 5.7%. Analysis indicated that greater percent water and marsh coverage resulted in a higher incidence of bopyrid occurrence. Analysis also indicated that higher bopyrid incidence occurred in creeks with higher salinity, temperature, and pH but lower dissolved oxygen. The land use characteristics found to limit bopyrid incidence were limiting to grass shrimp (definitive host) populations and probably copepod (intermediate host) populations as well.