965 resultados para Boolean Functions, Nonlinearity, Evolutionary Computation, Equivalence Classes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The set of initial conditions for which the pseudoclassical evolution algorithm (and minimality conservation) is verified for Hamiltonians of degrees N (N>2) is explicitly determined through a class of restrictions for the corresponding classical trajectories, and it is proved to be at most denumerable. Thus these algorithms are verified if and only if the system is quadratic except for a set of measure zero. The possibility of time-dependent a-equivalence classes is studied and its physical interpretation is presented. The implied equivalence of the pseudoclassical and Ehrenfest algorithms and their relationship with minimality conservation is discussed in detail. Also, the explicit derivation of the general unitary operator which linearly transforms minimum-uncertainty states leads to the derivation, among others, of operators with a general geometrical interpretation in phase space, such as rotations (parity, Fourier).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layout planning is a process of sizing and placing rooms (e.g. in a house) while a t t empt ing to optimize various criteria. Often the r e are conflicting c r i t e r i a such as construction cost, minimizing the distance between r e l a t ed activities, and meeting the area requirements for these activities. The process of layout planning ha s mostly been done by hand, wi th a handful of a t t empt s to automa t e the process. Thi s thesis explores some of these pa s t a t t empt s and describes several new techniques for automa t ing the layout planning process using evolutionary computation. These techniques a r e inspired by the existing methods, while adding some of the i r own innovations. Additional experimenLs are done to t e s t the possibility of allowing polygonal exteriors wi th rectilinear interior walls. Several multi-objective approaches are used to evaluate and compare fitness. The evolutionary r epr e s ent a t ion and requirements specification used provide great flexibility in problem scope and depth and is worthy of considering in future layout and design a t t empt s . The system outlined in thi s thesis is capable of evolving a variety of floor plans conforming to functional and geometric specifications. Many of the resulting plans look reasonable even when compared to a professional floor plan. Additionally polygonal and multi-floor buildings were also generated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the machinery of gene regulation to control gene expression has been one of the main focuses of bioinformaticians for years. We use a multi-objective genetic algorithm to evolve a specialized version of side effect machines for degenerate motif discovery. We compare some suggested objectives for the motifs they find, test different multi-objective scoring schemes and probabilistic models for the background sequence models and report our results on a synthetic dataset and some biological benchmarking suites. We conclude with a comparison of our algorithm with some widely used motif discovery algorithms in the literature and suggest future directions for research in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passive solar building design is the process of designing a building while considering sunlight exposure for receiving heat in winter and rejecting heat in summer. The main goal of a passive solar building design is to remove or reduce the need of mechanical and electrical systems for cooling and heating, and therefore saving energy costs and reducing environmental impact. This research will use evolutionary computation to design passive solar buildings. Evolutionary design is used in many research projects to build 3D models for structures automatically. In this research, we use a mixture of split grammar and string-rewriting for generating new 3D structures. To evaluate energy costs, the EnergyPlus system is used. This is a comprehensive building energy simulation system, which will be used alongside the genetic programming system. In addition, genetic programming will also consider other design and geometry characteristics of the building as search objectives, for example, window placement, building shape, size, and complexity. In passive solar designs, reducing energy that is needed for cooling and heating are two objectives of interest. Experiments show that smaller buildings with no windows and skylights are the most energy efficient models. Window heat gain is another objective used to encourage models to have windows. In addition, window and volume based objectives are tried. To examine the impact of environment on designs, experiments are run on five different geographic locations. Also, both single floor models and multi-floor models are examined in this research. According to the experiments, solutions from the experiments were consistent with respect to materials, sizes, and appearance, and satisfied problem constraints in all instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interior illumination is a complex problem involving numerous interacting factors. This research applies genetic programming towards problems in illumination design. The Radiance system is used for performing accurate illumination simulations. Radiance accounts for a number of important environmental factors, which we exploit during fitness evaluation. Illumination requirements include local illumination intensity from natural and artificial sources, colour, and uniformity. Evolved solutions incorporate design elements such as artificial lights, room materials, windows, and glass properties. A number of case studies are examined, including many-objective problems involving up to 7 illumination requirements, the design of a decorative wall of lights, and the creation of a stained-glass window for a large public space. Our results show the technical and creative possibilities of applying genetic programming to illumination design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce mémoire étudie l'algorithme d'amplification de l'amplitude et ses applications dans le domaine de test de propriété. On utilise l'amplification de l'amplitude pour proposer le plus efficace algorithme quantique à ce jour qui teste la linéarité de fonctions booléennes et on généralise notre nouvel algorithme pour tester si une fonction entre deux groupes abéliens finis est un homomorphisme. Le meilleur algorithme quantique connu qui teste la symétrie de fonctions booléennes est aussi amélioré et l'on utilise ce nouvel algorithme pour tester la quasi-symétrie de fonctions booléennes. Par la suite, on approfondit l'étude du nombre de requêtes à la boîte noire que fait l'algorithme d'amplification de l'amplitude pour amplitude initiale inconnue. Une description rigoureuse de la variable aléatoire représentant ce nombre est présentée, suivie du résultat précédemment connue de la borne supérieure sur l'espérance. Suivent de nouveaux résultats sur la variance de cette variable. Il est notamment montré que, dans le cas général, la variance est infinie, mais nous montrons aussi que, pour un choix approprié de paramètres, elle devient bornée supérieurement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, we discuss the application of global optimization and Evolutionary Computation to distributed systems. We therefore selected and classified many publications, giving an insight into the wide variety of optimization problems which arise in distributed systems. Some interesting approaches from different areas will be discussed in greater detail with the use of illustrative examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La optimización de sistemas y modelos se ha convertido en uno de los factores más importantes a la hora de buscar la mayor eficiencia de un proceso. Este concepto no es ajeno al transporte escolar, ambiente que cambia constantemente al ritmo de las necesidades de sus clientes, y que responde ante una fuerte responsabilidad frente a sus usuarios, los niños que hacen uso del servicio, en cuanto al cumplimiento de tiempos y seguridad, mientras busca constantemente la reducción de costos. Este proyecto expone las problemáticas presentadas en The English School en esta área y propone un modelo de optimización simple que permitirá notables mejoras en términos de tiempos y costos, de tal forma que genere beneficios para la institución en términos financieros y de satisfacción al cliente. Por medio de la implementación de este modelo será posible identificar errores comunes del proceso, se identificarán soluciones prácticas de fácil aplicación en el manejo del transporte y se presentarán los resultados obtenidos en la muestra utilizada para desarrollar el proyecto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La computación evolutiva y muy especialmente los algoritmos genéticos son cada vez más empleados en las organizaciones para resolver sus problemas de gestión y toma de decisiones (Apoteker & Barthelemy, 2000). La literatura al respecto es creciente y algunos estados del arte han sido publicados. A pesar de esto, no hay un trabajo explícito que evalúe de forma sistemática el uso de los algoritmos genéticos en problemas específicos de los negocios internacionales (ejemplos de ello son la logística internacional, el comercio internacional, el mercadeo internacional, las finanzas internacionales o estrategia internacional). El propósito de este trabajo de grado es, por lo tanto, realizar un estado situacional de las aplicaciones de los algoritmos genéticos en los negocios internacionales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the design of optimal multiple gravity assist trajectories with deep space manoeuvres. A pruning method which considers the sequential nature of the problem is presented. The method locates feasible vectors using local optimization and applies a clustering algorithm to find reduced bounding boxes which can be used in a subsequent optimization step. Since multiple local minima remain within the pruned search space, the use of a global optimization method, such as Differential Evolution, is suggested for finding solutions which are likely to be close to the global optimum. Two case studies are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fast Knowledge-based Evolution Strategy, KES, for the multi-objective minimum spanning tree, is presented. The proposed algorithm is validated, for the bi-objective case, with an exhaustive search for small problems (4-10 nodes), and compared with a deterministic algorithm, EPDA and NSGA-II for larger problems (up to 100 nodes) using benchmark hard instances. Experimental results show that KES finds the true Pareto fronts for small instances of the problem and calculates good approximation Pareto sets for larger instances tested. It is shown that the fronts calculated by YES are superior to NSGA-II fronts and almost as good as those established by EPDA. KES is designed to be scalable to multi-objective problems and fast due to its small complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synapsing variable-length crossover (SVLC algorithm provides a biologically inspired method for performing meaningful crossover between variable-length genomes. In addition to providing a rationale for variable-length crossover, it also provides a genotypic similarity metric for variable-length genomes, enabling standard niche formation techniques to be used with variable-length genomes. Unlike other variable-length crossover techniques which consider genomes to be rigid inflexible arrays and where some or all of the crossover points are randomly selected, the SVLC algorithm considers genomes to be flexible and chooses non-random crossover points based on the common parental sequence similarity. The SVLC algorithm recurrently "glues" or synapses homogenous genetic subsequences together. This is done in such a way that common parental sequences are automatically preserved in the offspring with only the genetic differences being exchanged or removed, independent of the length of such differences. In a variable-length test problem, the SVLC algorithm compares favorably with current variable-length crossover techniques. The variable-length approach is further advocated by demonstrating how a variable-length genetic algorithm (GA) can obtain a high fitness solution in fewer iterations than a traditional fixed-length GA in a two-dimensional vector approximation task.