981 resultados para Blood metabolites
Resumo:
BACKGROUND: Data from prior health scares suggest that an avian influenza outbreak will impact on people’s intention to donate blood; however research exploring this is scarce. Using an augmented theory of planned behavior (TPB), incorporating threat perceptions alongside the rational decision-making components of the TPB, the current study sought to identify predictors of blood donors’ intentions to donate during two phases of an avian influenza outbreak. STUDY DESIGN AND METHODS: Blood donors (N = 172) completed an on-line survey assessing the standard TPB predictors as well as measures of threat perceptions from the health belief model (HBM; i.e., perceived susceptibility and severity). Path analyses examined the utility of the augmented TPB to predict donors’ intentions to donate during a low- and high-risk phase of an avian influenza outbreak. RESULTS: In both phases, the model provided a good fit to the data explaining 69% (low risk) and 72% (high risk) of the variance in intentions. Attitude, subjective norm, and perceived susceptibility significantly predicted donor intentions in both phases. Within the low-risk phase, gender was an additional significant predictor of intention, while in the high-risk phase, perceived behavioral control was significantly related to intentions. CONCLUSION: An augmented TPB model can be used to predict donors’ intentions to donate blood in a low-risk and a high-risk phase of an outbreak of avian influenza. As such, the results provide important insights into donors’ decision-making that can be used by blood agencies to maintain the blood supply in the context of an avian influenza outbreak.
Resumo:
Postoperative fever in arthroplasty patients is common. The value of diagnostic workup of fever in this instance is of questionable utility. Studies have shown that blood cultures in this scenario add little to clinical management, but sample sizes have been small and the use of blood cultures in this setting continues. This study aimed to examine the value of blood cultures in the assessment of postoperative fever in a large arthroplasty population. The medical records of 101 patients who had 141 blood culture sets taken during a 2-year period were retrospectively analyzed. Of the 141 blood culture sets, only 2 returned positive results. These were both thought to be as a result of skin contamination at the time of venipuncture. No infectious sequelae occurred in either patient. We conclude that blood cultures have no role to play in the assessment of the febrile, otherwise asymptomatic arthroplasty patient in the early postoperative period.
Resumo:
Humans have altered environments and enhanced their well being unlike any other creature on the planet (Heilman & Donna, 2007); this is no different whether the environment is ecological, social or organisational. In recent times business modelling techniques have become intricately detailed in the pre-designing and evaluating of business flow before the final implementation (Ou-Yang & Lin, 2008). The importance of the organisation change and business process model is undeniable. The feedback received from real business process users is that the notation is easy to learn; the models do help people to understand the process better; the models can be used to improve the (business) process; and the notation is expressive enough to capture the essential information (Bennett, Doshi, Do Vale Junior, Kumar, Manikam, & Madavan, 2009).
Resumo:
Introduction Critical care patients frequently receive blood transfusions. Some reports show an association between aged or stored blood and increased morbidity and mortality, including the development of transfusion-related acute lung injury (TRALI). However, the existence of conflicting data endorses the need for research to either reject this association, or to confirm it and elucidate the underlying mechanisms. Methods Twenty-eight sheep were randomised into two groups, receiving saline or lipopolysaccharide (LPS). Sheep were further randomised to also receive transfusion of pooled and heat-inactivated supernatant from fresh (Day 1) or stored (Day 42) non-leucoreduced human packed red blood cells (PRBC) or an infusion of saline. TRALI was defined by hypoxaemia during or within two hours of transfusion and histological evidence of pulmonary oedema. Regression modelling compared physiology between groups, and to a previous study, using stored platelet concentrates (PLT). Samples of the transfused blood products also underwent cytokine array and biochemical analyses, and their neutrophil priming ability was measured in vitro. Results TRALI did not develop in sheep that first received saline-infusion. In contrast, 80% of sheep that first received LPS-infusion developed TRALI following transfusion with "stored PRBC." The decreased mean arterial pressure and cardiac output as well as increased central venous pressure and body temperature were more severe for TRALI induced by "stored PRBC" than by "stored PLT." Storage-related accumulation of several factors was demonstrated in both "stored PRBC" and "stored PLT", and was associated with increased in vitro neutrophil priming. Concentrations of several factors were higher in the "stored PRBC" than in the "stored PLT," however, there was no difference to neutrophil priming in vitro. Conclusions In this in vivo ovine model, both recipient and blood product factors contributed to the development of TRALI. Sick (LPS infused) sheep rather than healthy (saline infused) sheep predominantly developed TRALI when transfused with supernatant from stored but not fresh PRBC. "Stored PRBC" induced a more severe injury than "stored PLT" and had a different storage lesion profile, suggesting that these outcomes may be associated with storage lesion factors unique to each blood product type. Therefore, the transfusion of fresh rather than stored PRBC may minimise the risk of TRALI.
Resumo:
The lack of fundamental knowledge on the biological processes associated with wound healing represents a significant challenge. Understanding the biochemical changes that occur within a chronic wound could provide insights into the wound environment and enable more effective wound management. We report on the stability of wound fluid samples under various conditions and describe a high-throughput approach to investigate the altered biochemical state within wound samples collected from various types of chronic, ulcerated wounds. Furthermore, we discuss the viability of this approach in the early stages of wound sample protein and metabolite profiling and subsequent biomarker discovery. This approach will facilitate the detection of factors that may correlate with wound severity and/or could be used to monitor the response to a particular treatment.
Resumo:
25. Drugs affecting blood 25.1 Introduction 25.2 Important dysfunctions of the blood system 25.3 Drugs used in to correct dysfunctions of the blood 25.3.1 Anti-thrombosis treatments 25.3.1.1 Platelet aggregation inhibitors 25.3.1.2 Anticoagulants 25.3.1.3 Thrombolytics 25.3.2 Treatments for anaemia 25.3.3 Treatments for bleeding disorders
Resumo:
Human papillomaviruses (HPVs) are obligate epithelial pathogens and typically cause localized mucosal infections. We therefore hypothesized that T-cell responses to HPV antigens would be greater at sites of pathology than in the blood. Focusing on HPV-16 because of its association with cervical cancer, the magnitude of HPV-specific T-cell responses at the cervix was compared with those in the peripheral blood by intracellular cytokine staining following direct ex vivo stimulation with both virus-like particles assembled from the major capsid protein L1, and the major HPV oncoprotein, E7. We show that both CD4 + and CD8 + T cells from the cervix responded to the HPV-16 antigens and that interferon-γ (IFN-γ) production was HPV type-specific. Comparing HPV-specific T-cell IFN-γ responses at the cervix with those in the blood, we found that while CD4 + and CD8 + T-cell responses to L1 were significantly correlated between compartments (P = 0.02 and P = 0.05, respectively), IFN-γ responses in both T-cell subsets were significantly greater in magnitude at the cervix than in peripheral blood (P = 0.02 and P = 0.003, respectively). In contrast, both CD4 + and CD8 + T-cell IFN-γ responses to E7 were of similar magnitude in both compartments and CD8 + responses were significantly correlated between these distinct immunological compartments (P = 0.04). We therefore show that inflammatory T-cell responses against L1 (but not E7) demonstrate clear compartmental bias and the magnitude of these responses do reflect local viral replication but that correlation of HPV-specific responses between compartments indicates their linkage.
Resumo:
The aim of this study was to investigate the effect of court surface (clay v hard-court) on technical, physiological and perceptual responses to on-court training. Four high-performance junior male players performed two identical training sessions on hard and clay courts, respectively. Sessions included both physical conditioning and technical elements as led by the coach. Each session was filmed for later notational analysis of stroke count and error rates. Further, players wore a global positioning satellite device to measure distance covered during each session; whilst heart rate, countermovement jump distance and capillary blood measures of metabolites were measured before, during and following each session. Additionally a respective coach and athlete rating of perceived exertion (RPE) were measured following each session. Total duration and distance covered during of each session were comparable (P>0.05; d<0.20). While forehand and backhands stroke volume did not differ between sessions (P>0.05; d<0.30); large effects for increased unforced and forced errors were present on the hard court (P>0.05; d>0.90). Furthermore, large effects for increased heart rate, blood lactate and RPE values were evident on clay compared to hard courts (P>0.05; d>0.90). Additionally, while player and coach RPE on hard courts were similar, there were large effects for coaches to underrate the RPE of players on clay courts (P>0.05; d>0.90). In conclusion, training on clay courts results in trends for increased heart rate, lactate and RPE values, suggesting sessions on clay tend towards higher physiological and perceptual loads than hard courts. Further, coaches appear effective at rating player RPE on hard courts, but may underrate the perceived exertion of sessions on clay courts.
Resumo:
The feasibility of ex vivo blood production is limited by both biological and engineering challenges. From an engineering perspective, these challenges include the significant volumes required to generate even a single unit of a blood product, as well as the correspondingly high protein consumption required for such large volume cultures. Membrane bioreactors, such as hollow fiber bioreactors (HFBRs), enable cell densities approximately 100-fold greater than traditional culture systems and therefore may enable a significant reduction in culture working volumes. As cultured cells, and larger molecules, are retained within a fraction of the system volume, via a semipermeable membrane it may be possible to reduce protein consumption by limiting supplementation to only this fraction. Typically, HFBRs are complex perfusion systems having total volumes incompatible with bench scale screening and optimization of stem cell-based cultures. In this article we describe the use of a simplified HFBR system to assess the feasibility of this technology to produce blood products from umbilical cord blood-derived CD34+ hematopoietic stem progenitor cells (HSPCs). Unlike conventional HFBR systems used for protein manufacture, where cells are cultured in the extracapillary space, we have cultured cells in the intracapillary space, which is likely more compatible with the large-scale production of blood cell suspension cultures. Using this platform we direct HSPCs down the myeloid lineage, while targeting a 100-fold increase in cell density and the use of protein-free bulk medium. Our results demonstrate the potential of this system to deliver high cell densities, even in the absence of protein supplementation of the bulk medium.