975 resultados para Binary Cyclically Permutable Constant Weight Codes
Resumo:
Employing an error control code is one of the techniques to reduce the Peak-to-Average Power Ratio (PAPR) in a Orthogonal Frequency Division Multiplexing system, a well known class of such codes being the cosets of Reed-Muller codes. In this paper, we consider the class of such coset-codes of arbitrary linear codes and present a method of doubling the size of such a code without increasing the PAPR, by combining two such binary coset-codes. We identify the conditions under which we can employ this doubling more than once with no marginal increase in the PAPR value. Given a PAPR and length, our method has enabled to get the best coset-code (in terms of the size). Also, we show that the PAPR information of the coset-codes of the extended codes is obtainable from the PAPR of the corresponding coset-codes of the parent code. We have also shown a special type of lengthening is useful in PAPR studies.
Resumo:
The problem of constructing space-time (ST) block codes over a fixed, desired signal constellation is considered. In this situation, there is a tradeoff between the transmission rate as measured in constellation symbols per channel use and the transmit diversity gain achieved by the code. The transmit diversity is a measure of the rate of polynomial decay of pairwise error probability of the code with increase in the signal-to-noise ratio (SNR). In the setting of a quasi-static channel model, let n(t) denote the number of transmit antennas and T the block interval. For any n(t) <= T, a unified construction of (n(t) x T) ST codes is provided here, for a class of signal constellations that includes the familiar pulse-amplitude (PAM), quadrature-amplitude (QAM), and 2(K)-ary phase-shift-keying (PSK) modulations as special cases. The construction is optimal as measured by the rate-diversity tradeoff and can achieve any given integer point on the rate-diversity tradeoff curve. An estimate of the coding gain realized is given. Other results presented here include i) an extension of the optimal unified construction to the multiple fading block case, ii) a version of the optimal unified construction in which the underlying binary block codes are replaced by trellis codes, iii) the providing of a linear dispersion form for the underlying binary block codes, iv) a Gray-mapped version of the unified construction, and v) a generalization of construction of the S-ary case corresponding to constellations of size S-K. Items ii) and iii) are aimed at simplifying the decoding of this class of ST codes.
Resumo:
The stress concentration that occurs when load is diffused from a constant stress member into thin sheet is an important problem in the design of light weight structures. By using solutions in biharmonic polar-trigonometric series, the stress concentration can be effectively isolated so that highly accurate information necessary for design can be obtained. A method of analysis yielding high accuracy with limited effort is presented for rectangular panels with transverse edges free or supported by inextensional end ribs. Numerical data are given for panels with length twice the width.
Resumo:
Ultrasonic absorption has been studied by the pulse technique in the binary mixtures of acetic acid in water, methyl and ethyl alcohols and covers a range of 2 to 26 Mc/s. The mixtures are studied from 0 to 100% by weight of the acid. In all the three mixtures, two relaxation processes are observed, the first occurring below the frequency range of the study. The second one occurs near 20 Mc/s in the acid-water mixtures and at much higher frequencies in the other cases. It is qualitatively explained that the monomer-dimer reaction of the acetic acid giving a relaxation near 1 Mc/s has shifted to a higher frequency when mixed in a solvent thus giving rise to a second relaxation in the mixtures.
Resumo:
It is well known that Alamouti code and, in general, Space-Time Block Codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbolby-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). In this paper, we obtain SSD codes with unitary weight matrices (but not CON) from matrix representations of Clifford algebras. Moreover, we derive an upper bound on the rate of SSD codes with unitary weight matrices and show that our codes meet this bound. Also, we present conditions on the signal sets which ensure full-diversity and give expressions for the coding gain.
Resumo:
Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P = NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of 2(log n)(1-epsilon) for any epsilon > 0 unless NP subset of DTIME(n(poly(log n))).
Resumo:
The phase equilibrium studies of organic system, involving resorcinol (R) and p-dimethylaminobenzaldehyde (DMAB), reveal the formation of a 1:1 molecular complex with two eutectics. The heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and the excess thermodynamic functions were calculated based on enthalpy of fusion data determined via differential scanning calorimetric (DSC) method. X-ray powder diffraction studies confirm that the eutectics are not simple mechanical mixture of the components under investigation. The spectroscopic investigations (IR and NMR) suggest the occurrence of hydrogen bonding between the components forming the molecular complex. The dielectric measurements, carried out on hot-pressed addition compound (molecular complex), show higher dielectric constant at 320 K than that of individual components. The microstructural investigations of eutectic and addition compound indicate dendritic and faceted morphological features. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.
Resumo:
It is well known that n-length stabilizer quantum error correcting codes (QECCs) can be obtained via n-length classical error correction codes (CECCs) over GF(4), that are additive and self-orthogonal with respect to the trace Hermitian inner product. But, most of the CECCs have been studied with respect to the Euclidean inner product. In this paper, it is shown that n-length stabilizer QECCs can be constructed via 371 length linear CECCs over GF(2) that are self-orthogonal with respect to the Euclidean inner product. This facilitates usage of the widely studied self-orthogonal CECCs to construct stabilizer QECCs. Moreover, classical, binary, self-orthogonal cyclic codes have been used to obtain stabilizer QECCs with guaranteed quantum error correcting capability. This is facilitated by the fact that (i) self-orthogonal, binary cyclic codes are easily identified using transform approach and (ii) for such codes lower bounds on the minimum Hamming distance are known. Several explicit codes are constructed including two pure MDS QECCs.
Resumo:
Solid state reactive diffusion in binary Au-Sn system has been studied using the diffusion couple consisting of pure elements Au and Sn annealed in the temperature range of 180-100 degrees C for 25 h Interdiffusion zone consists of four intermetallic phases Au5Sn, AuSn, AuSn2, and AuSn4 Activation energy for parabolic growth constant and integrated diffusivity for each phase has been calculated to indicate about the possible mechanism for diffusion controlled growth process Parabolic growth constant of individual phases has also been compared Kirkendall marker plane position has been indicated in the interdiffusion zone and furthermore the ratio of intrinsic diffusivities of species has also been determined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We study t-analogs of string functions for integrable highest weight representations of the affine Kac-Moody algebra A(1)((1)). We obtain closed form formulas for certain t-string functions of levels 2 and 4. As corollaries, we obtain explicit identities for the corresponding affine Hall-Littlewood functions, as well as higher level generalizations of Cherednik's Macdonald and Macdonald-Mehta constant term identities.
Resumo:
A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.
Resumo:
Equations for the computation of integral and partial thermodynamic properties of mixing in quarternary systems are derived using data on constituent binary systems and shortest distance composition paths to the binaries. The composition path from a quarternary composition to the i-j binary is characterized by a constant value of (Xi − Xj). The merits of this composition path over others with constant values for View the MathML source or Xi are discussed. Finally the equations are generalized for higher order systems. They are exact for regular solutions, but may be used in a semiempirical mode for non-regular solutions.
Resumo:
It has been shown recently that the maximum rate of a 2-real-symbol (single-complex-symbol) maximum likelihood (ML) decodable, square space-time block codes (STBCs) with unitary weight matrices is 2a/2a complex symbols per channel use (cspcu) for 2a number of transmit antennas [1]. These STBCs are obtained from Unitary Weight Designs (UWDs). In this paper, we show that the maximum rates for 3- and 4-real-symbol (2-complex-symbol) ML decodable square STBCs from UWDs, for 2a transmit antennas, are 3(a-1)/2a and 4(a-1)/2a cspcu, respectively. STBCs achieving this maximum rate are constructed. A set of sufficient conditions on the signal set, required for these codes to achieve full-diversity are derived along with expressions for their coding gain.
Resumo:
It is well known that the space-time block codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas n is a power of 2. The rate of the square CODs for n = 2(a) has been shown to be a+1/2(a) complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the minimum-decoding-complexity STBCs from quasi-orthogonal designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a/2(a)-1 complex symbols per channel use for 2(a) antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.