903 resultados para Bayesian inference, Behaviour analysis, Security, Visual surveillance
Resumo:
In any decision making under uncertainties, the goal is mostly to minimize the expected cost. The minimization of cost under uncertainties is usually done by optimization. For simple models, the optimization can easily be done using deterministic methods.However, many models practically contain some complex and varying parameters that can not easily be taken into account using usual deterministic methods of optimization. Thus, it is very important to look for other methods that can be used to get insight into such models. MCMC method is one of the practical methods that can be used for optimization of stochastic models under uncertainty. This method is based on simulation that provides a general methodology which can be applied in nonlinear and non-Gaussian state models. MCMC method is very important for practical applications because it is a uni ed estimation procedure which simultaneously estimates both parameters and state variables. MCMC computes the distribution of the state variables and parameters of the given data measurements. MCMC method is faster in terms of computing time when compared to other optimization methods. This thesis discusses the use of Markov chain Monte Carlo (MCMC) methods for optimization of Stochastic models under uncertainties .The thesis begins with a short discussion about Bayesian Inference, MCMC and Stochastic optimization methods. Then an example is given of how MCMC can be applied for maximizing production at a minimum cost in a chemical reaction process. It is observed that this method performs better in optimizing the given cost function with a very high certainty.
Resumo:
The aim of this work is to apply approximate Bayesian computation in combination with Marcov chain Monte Carlo methods in order to estimate the parameters of tuberculosis transmission. The methods are applied to San Francisco data and the results are compared with the outcomes of previous works. Moreover, a methodological idea with the aim to reduce computational time is also described. Despite the fact that this approach is proved to work in an appropriate way, further analysis is needed to understand and test its behaviour in different cases. Some related suggestions to its further enhancement are described in the corresponding chapter.
Resumo:
Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks.
Resumo:
This paper proposes and demonstrates an approach, Skilloscopy, to the assessment of decision makers. In an increasingly sophisticated, connected and information-rich world, decision making is becoming both more important and more difficult. At the same time, modelling decision-making on computers is becoming more feasible and of interest, partly because the information-input to those decisions is increasingly on record. The aims of Skilloscopy are to rate and rank decision makers in a domain relative to each other: the aims do not include an analysis of why a decision is wrong or suboptimal, nor the modelling of the underlying cognitive process of making the decisions. In the proposed method a decision-maker is characterised by a probability distribution of their competence in choosing among quantifiable alternatives. This probability distribution is derived by classic Bayesian inference from a combination of prior belief and the evidence of the decisions. Thus, decision-makers’ skills may be better compared, rated and ranked. The proposed method is applied and evaluated in the gamedomain of Chess. A large set of games by players across a broad range of the World Chess Federation (FIDE) Elo ratings has been used to infer the distribution of players’ rating directly from the moves they play rather than from game outcomes. Demonstration applications address questions frequently asked by the Chess community regarding the stability of the Elo rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The method of Skilloscopy may be applied in any decision domain where the value of the decision-options can be quantified.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The main goal of this paper is to investigate a cure rate model that comprehends some well-known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Were estimate (co)variance and genetic associations between conformation, finishing precocity and muscling visual scores measured at weaning (SCW, SFW and SMW, respectively) and yearling (SCY. SFY and SMY, respectively) with mature weight (MW) in Nelore cows, in order to predict the possible changes that inclusion of visual scores in beef cattle selection indices would bring to female mature weight. The data set contained records of 36,757 females, born between 1993 and 2006, belonging to the Jacarezinho cattle raising farm. (Co)variance components were estimated by bivariate animal models using Bayesian inference method through Gibbs sampling, assuming a linear model for MW and a nonlinear (threshold) model for conformation, finishing precocity and muscling visual scores. The first 10,000 rounds were considered as the burn-in period and discarded. The posterior means of direct heritability distributions were: 0.16 +/- 0.02 (SCW); 0.20 +/- 0.02 (SFW); 0.19 +/- 0.02 (SMW); 0.24 +/- 0.02 (SCY); 0.31 +/- 0.02 (SFY); 0.32 +/- 0.02 (SMY) and 0.46 +/- 0.04 (MW). Estimates of genetic correlations between visual scores and MW were positive and moderate, ranging from 0.27 +/- 0.06 to 0.36 +/- 0.04. Visual scores and MW should respond favorably to direct selection. Mature weight can be used in Nelore breeding programs designed to monitor the cows' size. Selection of animals with higher conformation, finishing precocity and muscling scores, especially at yearling, should promote an increase in cows' mature weight. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Practical Bayesian inference depends upon detailed examination of posterior distribution. When the prior and likelihood are conjugate, this is easily carried out; however, in general, one must resort to numerical approximation. In this paper, our aim is to solve, using MAPLE, the Bayesian paradigm, for a very special data collecting procedure, known as the randomized-response technique. This allows researchers to obtain sensitive information while guaranteeing privacy to respondents. This approach intends to reduce false responses on sensitive questions. Exact methods and approximations will be compared from the accuracy point of view as well as for the computational effort.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study proposes to ascertain the importance of each alimentary category in the Tetrapturus albidus diet composition, as well as to propose the use of the Bayesian approach for analysis of these data. The stomachs were collected during fishing cruises carried out by the Santos-SP longliner from July 2007 to June 2008. For Bayesian model formulation, each alimentary item was clustered in four food categories as: teleost, cephalopod, crustaceans, and others. To estimate the proportion of each food category, the multinomial model with Dirichlet conjugate prior distribution was used. After the stomach contents analysis, 133 food items were identified, which belonged to 9 taxa. The most important food category is constituted by cephalopod molluscs, followed by teleost fishes. The food category comprised of crustaceans presents a low contribution and in this case it could be considered to be an accidental food item. The Bayesian approach means a distinct view in relation to traditional methods, as it permits one to incorporate information obtained from the literature. It should be useful to analyse great top predators, which are usually caught in small numbers.
Resumo:
In the context of Bayesian statistical analysis, elicitation is the process of formulating a prior density f(.) about one or more uncertain quantities to represent a person's knowledge and beliefs. Several different methods of eliciting prior distributions for one unknown parameter have been proposed. However, there are relatively few methods for specifying a multivariate prior distribution and most are just applicable to specific classes of problems and/or based on restrictive conditions, such as independence of variables. Besides, many of these procedures require the elicitation of variances and correlations, and sometimes elicitation of hyperparameters which are difficult for experts to specify in practice. Garthwaite et al. (2005) discuss the different methods proposed in the literature and the difficulties of eliciting multivariate prior distributions. We describe a flexible method of eliciting multivariate prior distributions applicable to a wide class of practical problems. Our approach does not assume a parametric form for the unknown prior density f(.), instead we use nonparametric Bayesian inference, modelling f(.) by a Gaussian process prior distribution. The expert is then asked to specify certain summaries of his/her distribution, such as the mean, mode, marginal quantiles and a small number of joint probabilities. The analyst receives that information, treating it as a data set D with which to update his/her prior beliefs to obtain the posterior distribution for f(.). Theoretical properties of joint and marginal priors are derived and numerical illustrations to demonstrate our approach are given. (C) 2010 Elsevier B.V. All rights reserved.