908 resultados para Art metal-work, Ancient
Resumo:
"This paper is an analysis of the data contained in a report of the ASME Research Committee on Plastic Flow of Metals entitled Rolling of metals."
Resumo:
We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions >= 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.
Resumo:
El propósito de este estudio es realizar un estado del arte sobre estrés laboral entre los años 2005 y 2016 utilizando artículos publicados en las bases de datos Ebsco, Apa-Psychnet, Proquest, Psycodoc, Pubmed, Redalyc y Scielo las cuales están abaladas por la Universidad del Rosario. Se hallaron en total 2674 artículos utilizando 6 palabras claves como criterios de búsqueda los cuales fueron Estrés Laboral, Estrés ocupacional, Estrés en el Trabajo, Job Stress, Work Stress y Occupational Stress. El instrumento de recolección de información fue una ficha bibliográfica modificada la cual permitió sistematizar los datos de los artículos encontrados en diferentes dimensiones para así poder utilizar los artículos encontrados como unidades de análisis para la investigación. El análisis de los artículos arrojó una diferencia significativa entre el volumen de publicaciones hechas en español versus las hechas en inglés tanto de artículos empíricos como teóricos. También se encontraron indicadores que permiten ver como el estudio del estrés laboral ha aumentado desde el año 2012 hasta la actualidad, siendo este el lapso en el cual el 59% de los artículos han sido arbitrados y subidos a las diferentes bases de datos.
Resumo:
The goal of this study is to identify cues for the cognitive process of attention in ancient Greek art, aiming to find confirmation of its possible use by ancient Greek audiences and artists. Evidence of cues that trigger attention’s psychological dispositions was searched through content analysis of image reproductions of ancient Greek sculpture and fine vase painting from the archaic to the Hellenistic period - ca. 7th -1st cent. BC. Through this analysis, it was possible to observe the presence of cues that trigger orientation to the work of art (i.e. amplification, contrast, emotional salience, simplification, symmetry), of a cue that triggers a disseminate attention to the parts of the work (i.e. distribution of elements) and of cues that activate selective attention to specific elements in the work of art (i.e. contrast of elements, salient color, central positioning of elements, composition regarding the flow of elements and significant objects). Results support the universality of those dispositions, probably connected with basic competencies that are hard-wired in the nervous system and in the cognitive processes.
Resumo:
Carbon dioxide reforming of methane produces synthesis gas with a low hydrogen to carbon monoxide ratio, which is desirable for many industrial synthesis processes. This reaction also has very important environmental implications since both methane and carbon dioxide contribute to the greenhouse effect. Converting these gases into a valuable feedstock may significantly reduce the atmospheric emissions of CO2 and CH4. In this paper, we present a comprehensive review on the thermodynamics, catalyst selection and activity, reaction mechanism, and kinetics of this important reaction. Recently, research has centered on the development of catalysts and the feasible applications of this reaction in industry. Group VIII metals supported on oxides are found to be effective for this reason. However, carbon deposition causing catalyst deactivation is the major problem inhibiting the industrial application of the CO2/CH4 reaction. Ni-based catalysts impregnated on certain supports show carbon-free operation and thus attract much attention. To develop an effective catalyst for CO2 reforming of CH4 and accelerate the commercial application of the reaction, the following are identified to be the most important areas for future work: (1) selection of metal and support and studying the effect of their interaction on catalyst activity; (2) the effect of different promoter on catalyst activity; (3) the reaction mechanism and kinetics; and (4) pilot reactor performance and scale-up operation.
Resumo:
The interface dipole and its role in the effective work function (EWF) modulation by Al incorporation are investigated. Our study shows that the interface dipole located at the high-k/SiO2 interface causes an electrostatic potential difference across the metal/high-k interface, which significantly shifts the band alignment between the metal and high-k, consequently modulating the EWF. The electrochemical potential equalization and electrostatic potential methods are used to evaluate the interface dipole and its contribution. The calculated EWF modulation agrees with experimental data and can provide insight to the control of EWF in future pMOS technology.
Resumo:
For many decades it has been assumed that an adsorbate centered above a metal surface and with a net negative charge should increase the work function of the surface. However, despite their electronegativity, N adatoms on W{100} cause a significant work function decrease. Here we present a resolution of this anomaly. Using density functional theory, we demonstrate that while the N atom carries a negative charge, of overriding importance is a reduction in the surface overspill electron density into the vacuum, when that charge is engaged in bonding to the adatom. This novel interpretation is fundamentally important in the general understanding of work function changes induced by atomic adsorbates.
Resumo:
The ways in which the "traditional" tension between words and artwork can be perceived has huge implications for understanding the relationship between critical or theoretical interpretation, art and practice, and research. Within the practice-led PhD this can generate a strange sense of disjuncture for the artist-researcher particularly when engaged in writing the exegesis. This paper aims to explore this tension through an introductory investigation of the work of the philosopher Andrew Benjamin. For Benjamin criticism completes the work of art. Criticism is, with the artwork, at the centre of our experience and theoretical understanding of art – in this way the work of art and criticism are co-productive. The reality of this co-productivity can be seen in three related articles on the work of American painter Marcia Hafif. In each of these articles there are critical negotiations of just how the work of art operates as art and theoretically, within the field of art. This focus has important ramifications for the writing and reading of the exegesis within the practice-led research higher degree. By including art as a significant part of the research reporting process the artist-researcher is also staking a claim as to the critical value of their work. Rather than resisting the tension between word and artwork the practice-led artist-researcher need to embrace the co-productive nature of critical word and creative work to more completely articulate their practice and its significance as research. The ideal venue and opportunity for this is the exegesis.
Resumo:
Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile TiO2 structure. Also for the first time, a Dye-sensitized Solar Cell (DSC) combining a HRT is reported in conjunction with a high-extinction-coefficient metal-free organic sensitizer (D149), achieving a conversion efficiency of 5.5%, which is superior to ones employing P25 (4.5%), comparable to state-of-the-art commercial transparent titania anatase paste (5.8%). Further to this, an overall conversion efficiency 8.6% was achieved when HRT was used as the light scattering layer, a considerable improvement over the commercial transparent/reflector titania anatase paste (7.6%), a significantly smaller gap in performance than has been seen previously.
Resumo:
Distribution of particle reinforcements in cast composites is determined by the morphology of the solidification front. Interestingly, during solidification, the morphology of the interface is intrinsically affected by the presence of dispersed reinforcements. Thus the dispersoid distribution and length scale of matrix microstructure is a result of the interplay between these two. A proper combination of material and process parameters can be used to obtain composites with tailored microstructures. This requires the generation of a broad data base and optimization of the complete solidification process. The length scale of soldification microtructure has a large influence on the mechanical properties of the composites. This presentation addresses the concept of a particle distribution map which can help in predicting particle distribution under different solidification conditions Future research directions have also been indicated.