188 resultados para Amorceur siloxane
Resumo:
Recent advances have accelerated the development of biosensors for the analysis of specific gene sequences. In this kind of biosensor, a DNA probe is immobilized on a transducer and the hybridization with the target DNA is monitored by suitable methodology. In the present work, the streptavidin (STA) was encapsulated in thin films siloxane-poly(propylene oxide) hybrids prepared by sol-gel method and deposited on the graphite electrode surface by dip-coating process. Biotinylated 18-mer probes were immobilized through STA and a novel amperometric DNA biosensor for the detection and genotyping of the hepatitis C virus (genotypes 1, 2A/C, 2B and 3) is described. The HCV RNA from serum was submitted to reverse transcriptase-linked polymerase chain reaction (RT-PCR) and biotin-labeled cDNA was obtained. Thus, the cDNA was hybridized to the target-specific oligonucleotide probe immobilized on the graphite electrode surface and following the avidin-peroxidase conjugate was added. The enzymatic response was investigated by constant potential amperometry at -0.45 V versus Ag/AgCl using H2O2 and KI solutions. HCV RNA negative and positive controls and positive samples of sera patients were analyzed and the results were compared to commercial kit. The proposed methodology appeared to be suitable and convenient tool for streptavidin immobilization and diagnose of HCV disease. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
DEVELOPMENT of LIQUID-CRYSTALLINE SYSTEMS USING SILICON GLYCOL COPOLYMER and POLYETHER FUNCTIONAL SILOXANE. For the construction of the phase diagrams, the method of the aqueous titration was used. There were prepared 5 ternary diagrams, varying the surfactant and the oil phase. The liquid-crystalline phases were identified by polarized light microscopy. The formulations prepared with silicon glycol copolymer, polyether functional siloxane (PFS) and water (S(1)) and with diisopropyl adipate, PFS and water (S(4)) presented liquid-crystalline phases with lamellar arrangement. Moreover, after 15 days in hot oven (37 degrees C), the formulations presented hexagonal arrangement, evidencing the influence of the temperature in the organization of the system.
Resumo:
Flexible, transparent, and insoluble urea-cross-linked polyether-siloxane hybrids presenting a tunable drug delivery pattern were prepared using the sol-gel method from PEO (poly(ethylene oxide)) and PPO (poly(propylene oxide)) functionalized at both chain ends with triethoxysilane. Different polyether chain lengths were used to control the urea/siloxane (named ureasil) node density, flexibility, and swellability of the hybrid network. We herein demonstrate that the drug release from swellable hydrophilic ureasil-PEO hybrids can be sustained for some days, whereas that from the unswellable ureasil-PPO hybrids can be sustained for some weeks. This outstanding feature conjugated with the biomedically safe formulation of the ureasil cross-linked polyether-siloxane hybrid widens their scope of application to include the domain of soft and implantable drug delivery devices.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: This in vitro study evaluated the dimensional accuracy of two impression techniques (tapered and splinted) with two stock trays (plastic and metal) for implant-supported prostheses. Materials and Methods: A master cast with four parallel abutment analogs and a passive framework were fabricated. Polyvinyl siloxane impression material was used for all impressions with two metal stock trays and two plastic stock trays (closed and open trays). Four groups (tapered plastic, splinted plastic, tapered metal, and splinted metal) and a control group (master cast) were tested (n = 5 for each group). After the framework was seated on each of the casts, one abutment screw was tightened, and the marginal gap between the abutment and framework on the other side was measured with a stereomicroscope. The measurements were analyzed with the Kruskal-Wallis one-way analysis of variance on ranks test followed by the Dunn method. Results: The mean values (+/- standard deviations) for the abutment/framework interface gaps were: master cast, 32 +/- 2 mu m; tapered metal, 44 +/- 10 mu m; splinted metal, 69 +/- 28 mu m; tapered plastic, 164 +/- 58 mu m; splinted plastic, 128 +/- 47 mu m. No significant difference was detected between the master cast, tapered metal, and splinted metal groups or between the tapered and splinted plastic groups. Conclusions: In this study, the rigidity of the metal stock tray ensured better results than the plastic stock tray for implant impressions with a high-viscosity impression material (putty). Statistically similar results were obtained using tapered impression copings and splinted squared impression copings. The tapered impression copings technique and splinted squared impression copings technique with a metal stock tray produced precise casts with no statistically significant difference in interface gaps compared to the master cast. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:544-550.
Resumo:
Driven by the challenges involved in the development of new advanced materials with unusual drug delivery profiles capable of improving the therapeutic and toxicological properties of existing cancer chemotherapy, the one-pot sol-gel synthesis of flexible, transparent and insoluble urea-cross-linked polyether-siloxane hybrids has been recently developed. In this one-pot synthesis, the strong interaction between the antitumor cisplatin (CisPt) molecules and the ureasil-poly(propylene oxide) (PPO) hybrid matrix gives rise to the incorporation and release of an unknown CisPt-derived species, hindering the quantitative determination of the drug release pattern from the conventional UV-Vis absorption technique. In this article, we report the use of an original synchrotron radiation calibration method based on the combination of XAS and UV-Vis for the quantitative determination of the amount of Pt-based molecules released in water. Thanks to the combination of UV-Vis, XAS and Raman techniques, we demonstrated that both the CisPt molecules and the CisPt-derived species are loaded into an ureasil-PPO/ureasil-poly(ethylene oxide) (PEO) hybrid blend matrix. The experimentally determined molar extinction coefficient of the CisPt-derived species loaded into ureasil-PPO hybrid matrix enabled the simultaneous time-resolved monitoring of each Pt species released from this hybrid blend matrix.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fractional factorial design and factorial with center point design were applied to the development of an amperometric biosensor for the detection of the hepatitis C virus. Biomolecules were immobilized by adsorption on graphite electrodes modified with siloxane-poly(propyleneoxide) hybrid matrix prepared using the sol-gel method. Several parameters were optimized, such as the streptavidin concentration at 0.01 mg mL(-1) and 1.0% bovine serum albumin, the incubation time of the electrodes in the complementary DNA solution for 30 minutes and a 1: 1500 dilution of the avidin-peroxidase conjugate, among others. The application of chemometric studies has been efficient, since the best conditions have been established with a restricted number of experiments, indicating the influence of different factors on the system.
Resumo:
Sol-gel derived poly(oxyethylene)/siloxane organic/inorganic di-ureasil hybrids containing different amounts of methacrylic acid (McOH, CH(2)=C(CH(3))COOH)) modified zirconium oxo-clusters (Zr-OMc) were processed as thin films deposited in glassy substrates via spin coating and as transparent and shape controlled monoliths. Channel monomode waveguides and diffraction gratings were UV patterned using the Talbot interferometer and the Lloyd mirror interferometer experimental setups. The time dependence of the diffraction gratings efficiency was studied for hybrids containing different amounts of Zr-OMc. Finally, the number of propagating modes and the refractive index gradient within the waveguide region, determined as a Gaussian section located below the patterned channel, was evaluated and modeled, a maximum index contrast of 2.43 X 10(-5) being estimated.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The physicochemical properties and morphology of spongolite, a fibrous hollow material from Mato Grosso do Sul State (Brazil) have been studied. The results of thermal analysis, scanning electron microscopy (SEM), X-ray diffraction and NMR spectroscopy indicated that external and internal surfaces of silica spicules are covered by silica gel layers. The water evolved in the range 120-350degreesC is the result of silanol groups condensation to siloxane bonds. Total homogenization of the needles is achieved by heating spongolite over 900degreesC. This mineral may be considered as a natural composite material containing surface-immobilized reactive species. The presence of active silica gel layers opens the possibilities of attaching functional groups to spongolite surface. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A structure modeling of two families of sol-gel derived Eu3+-doped organic/inorganic hybrids based on the results of small-angle X-ray scattering experiments is reported. The materials are composed of poly(oxyethylene) chains grafted at one or both ends to siloxane groups and are called mono- and di-urethanesils, respectively. A theoretical function corresponding to a two-level hierarchical structure model fits well the experimental Scattering curves. The first level corresponds to small siloxane clusters embedded in a polymeric matrix. The secondary level is associated to the existence of siloxane cluster rich domains surrounded by a cluster-depleted polymeric matrix. Results show that increasing europium doping favors the growth of the secondary domains. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Nd3+-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly (oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF3SO3)(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), Si-29 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.
Resumo:
The preparation and characterization of new Eu3+ doped polyphosphate-aminosilane hybrids xerogels is reported. Eu3+ D-5(0) emission quantum efficiency ranges from 0.41 to 0.54 depending on the SUP ratio. These rather high values are due to the substitution of phosphate and amino groups for water in the Eu3+ coordination shell. Raman and Si-29 and C-13 CP-MAS NMR results suggest that no strong interaction exists between the polyphosphate and the siloxane parts. Not fully condensed siloxane colloidal domains seem to be homogeneously distributed in the polyphosphate network. Good optical quality and favorable Eu3+ spectroscopic characteristics suggest these new hybrids as good hosts for lanthanide ions in optical devices. (C) 2003 Published by Elsevier B.V.