229 resultados para AGROBACTERIUM
Resumo:
The development of biotechnology techniques in plant breeding and the new commercial applications have raised public and scientific concerns about the safety of genetically modified (GM) crops and trees. To find out the feasibility of these new technologies in the breeding of commercially important Finnish hardwood species and to estimate the ecological risks of the produced transgenic plants, the experiments of this study have been conducted as a part of a larger project focusing on the risk assessment of GM-trees. Transgenic Betula pendula and Populus trees were produced via Agrobacterium mediated transformation. Stilbene synthase (STS) gene from pine (Pinus sylvestris) and chitinase gene from sugar beet (Beta vulgaris) were transferred to (hybrid) aspen and birch, respectively, to improve disease resistance against fungal pathogens. To modify lignin biosynthesis, a 4-coumarate:coenzyme A ligase (4CL) gene fragment in antisense orientation was introduced into two birch clones. In in vitro test, one transgenic aspen line expressing pine STS gene showed increased resistance to decay fungus Phellinus tremulae. In the field, chitinase transgenic birch lines were more susceptible to leaf spot (Pyrenopeziza betulicola) than the non-transgenic control clone while the resistance against birch rust (Melampsoridium betulinum) was improved. No changes in the content or composition of lignin were detected in the 4CL antisense birch lines. In order to evaluate the ecological effects of the produced GM trees on non-target organisms, an in vitro mycorrhiza experiment with Paxillus involutus and a decomposition experiment in the field were performed. The expression of a transgenic chitinase did not disturb the establishment of mycorrhizal symbiosis between birch and P. involutus in vitro. 4CL antisense transformed birch lines showed retarded root growth but were able to form normal ectomycorrhizal associations with the mycorrhizal fungus in vitro. 4CL lines also showed normal litter decomposition. Unexpected growth reductions resulting from the gene transformation were observed in chitinase transgenic and 4CL antisense birch lines. These results indicate that genetic engineering can provide a tool in increasing disease resistance in Finnish tree species. More extensive data with several ectomycorrhizal species is needed to evaluate the consequences of transgene expression on beneficial plant-fungus symbioses. The potential pleiotropic effects of the transgene should also be taken into account when considering the safety of transgenic trees.
Resumo:
Plus-stranded (plus) RNA viruses multiply within a cellular environment as tightly integrated units and rely on the genetic information carried within their genomes for multiplication and, hence, persistence. The minimal genomes of plus RNA viruses are unable to encode the molecular machineries that are required for virus multiplication. This sets requisites for the virus, which must form compatible interactions with host components during multiplication to successfully utilize primary metabolites as building blocks or metabolic energy, and to divert the protein synthesis machinery for production of viral proteins. In fact, the emerging picture of a virus-infected cell displays tight integration with the virus, from simple host and virus protein interactions through to major changes in the physiological state of the host cell. This study set out to develop a method for the identification of host components, mainly host proteins, that interact with proteins of Potato virus A (PVA; Potyvirus) during infection. This goal was approached by developing affinity-tag based methods for the purification of viral proteins complexed with associated host proteins from infected plants. Using this method, host membrane-associated viral ribonucleoprotein (RNP) complexes were obtained, and several host and viral proteins could be identified as components of these complexes. One of the host proteins identified using this strategy was a member of the heat shock protein 70 (HSP70) family, and this protein was chosen for further analysis. To enable the analysis of viral gene expression, a second method was developed based on Agrobacterium-mediated virus genome delivery into plant cells, and detection of virally expressed Renilla luciferase (RLUC) as a quantitative measure of viral gene expression. Using this method, it was observed that down-regulation of HSP70 caused a PVA coat protein (CP)-mediated defect associated with replication. Further experimentation suggested that CP can inhibit viral gene expression and that a distinct translational activity coupled to replication, referred to as replication-associated translation (RAT), exists. Unlike translation of replication-deficient viral RNA, RAT was dependent on HSP70 and its co-chaperone CPIP. HSP70 and CPIP together regulated CP turnover by promoting its modification by ubiquitin. Based on these results, an HSP70 and CPIP-driven mechanism that functions to regulate CP during viral RNA replication and/or translation is proposed, possibly to prevent premature particle assembly caused by CP association with viral RNA.
Resumo:
Calendula officinalis is grown widely as an ornamental plant across Europe. It belongs to the large. Asteraceae family. In this study, the aim was to explore the possibilities to use Calendula officinalis as a new model organism for flower development and secondary mechanism studies in Asteraceae. Tissue culture of Calendula officinalis was established using nine different cultivars. Murashige & Skoog (MS) medium with four different combinations of plant growth regulators were tested. Of all these combinations, the medium containing 1mg/l BAP, 0.1 mg/l IAA, and 1mg/l Zeatin achieved highest frequency of adventitious shoot regeneration from hypocotyl and cotyledon explants. Virus-induced gene silencing is a recent developed genetic tool for charactering the gene functions in plants, and extends the range of host plants that are not accessible for Agrobacterium transformation. Here, tobacco rattle virus (TRV)-based VIGS technique was tested in calendula (cv. Single Orange). We used TRV carrying Gerbera hybrid phytoene desaturase (PDS) gene fragment to induce PDS silencing in calendula. Vacuum infiltration and syringe infiltration methods both resulted in photo-bleaching phenotypes in leaves, bracts and petals. Loss-of-function phenotypes occurred on calendula 13 days post-infiltration. In conclusion, the data indicates that calendula explants can be regenerated through tissue culture which is a prerequisite for development of stable transformation methods. However, further optimization is still needed to improve the frequency. In addition, VIGS was applied to silence PDS marker gene expression indicating that this method has potential for gene functional studies in future.
Resumo:
Vigna Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) cDNA was transferred to chickpea (Cicer arietinum L.) cultivar Annigeri via Agrobacterium tumefaciens mediated transformation. Following selection on hygromycin and regeneration, 60 hygromycin-resistant plants were recovered. Southern blot analysis of five fertile independent lines of T0 and T1 generation revealed single and multiple insertions of the transgene. RT-PCR and Western blot analysis of T0 and T1 progeny demonstrated that the P5CS gene is expressed and produced functional protein in chickpea. T1 transgenic lines accumulated higher amount of proline under 250 mM NaCl compared to untransformed controls. Higher accumulation of Na(+) was noticed in the older leaves but negligible accumulation in seeds of T1 transgenic lines as compared to the controls. Chlorophyll stability and electrolyte leakage indicated that proline overproduction helps in alleviating salt stress in transgenic chickpea plants. The T1 transgenics lines were grown to maturity and set normal viable seeds under continuous salinity stress (250 mM) without any reduction in plant yield in terms of seed mass.
Resumo:
Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.
Resumo:
Plant viruses exploit the host machinery for targeting the viral genome-movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein la (PDLP la) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER-GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER-GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130-138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm-NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
152 p. : il., col.
Resumo:
本文报道农杆菌转化毛白杨的高效遗传转化系统的建立。所用农杆菌菌株为:1.发根农杆菌R1000,含有Ri质粒pRiA4b。2.发根农杆菌R1000(pTVK85),是菌株R1000中除含有pRiA4b外,并兼容一个带有超致病区(Supervirulent region)的质粒pTVK85。3.根癌农杆菌C58C1(pBZ693),其质粒pBZ693是改建过的Ti质粒,载有T-DNA的基因1和基因2。将毛白杨外植体分别与上述菌株在MS+0.5ppm激动素培养基上先培养2天后,转移至MS+500ppm氨噻肟头胞霉素的培养基上。一个星期后即有根从外植体上产生。根癌农杆菌诱导的根形态明显与发根农杆菌诱导的根不同。R1000(pTVK85)诱导生根的外植体可占供试外植体总数的59%。转化的根有的可自发地形成不定芽或愈伤组织。通过培养基中激素的调整,可使转化的根系统100%再生出不定芽,并可由这些不定芽得到完整植株。转化植株的各克隆之间表型差异很大。有的地上部形态正常,仅根系与未转化植株有所不同。有的节间短、叶片多、顶端优势弱、根系发达而多发枝、多根毛。但所有转化植株皆无皱叶现象,其叶片形态与正常植株无异。普遍地有根生于植株的培养基平面以上部分的现象。取三个克隆的植株进行Southern杂交,其中两个为杂交阳性,表明确已被转化;另一个克隆为杂交阴性。
Resumo:
从4-5天龄青花菜(Brassica oleracea var.italica)下胚轴游离原生质体,经纯化后培养在简化的KMsP培养基上,原生质体分裂形成了细胞团;同时,对影响外源DNA导入子叶和下胚轴原生质体后瞬间表达强度的若干因素作了较详细的研究,这些因素包括转化介质中二价阳离子的种类和浓度、PEG溶液的浓度以及PEG溶液的pH值, 为进一步进行原生质体水平上的细胞遗传转化创造了条件。 以青花菜(Brassica oleracea var.italica)子叶和下胚轴为外植体材料,进行了根癌农杆菌介导的遗传转化研究。在建立了子叶和下胚轴外植体组织培养的高频率植株再生系统的基础上,用携带有双元载体质粒的根癌农杆菌(Asrobacterium,tumefaciens)A208sE感染青花菜子叶和下胚轴,对根癌农杆菌的感染过程以及影响抗性芽分化频率的诸多因素作了详细研究,再生了具有卡那霉素抗性的完整转化植株。Dot Blot分析表明NPTⅡ酶活性的存在;以pROA93经EcoRI /HindⅢ酶切产生的gus基因片段(约2.6Kb)为探针进行Southern Blot分子杂交,结果表明gus基因已整合到植物细胞基因组中,并且得到了表达。
Resumo:
利用聚合酶链式反应(PCR)技术从Alcaligenes eutrophus H16染色体DNA中扩增并克隆了调控聚-3-羟基丁酸(poly-3-hydroxy-butyrate,PHB)生物合成的两个关键酶基因:依赖NADPH的乙酰乙酰CoA还原酶基因(phbB)和PHB合成酶基因(phbC)。限制性内切酶图谱和核苷酸序列分析证实了克隆结果,并表明克隆的基因与国外所报道的有很高的同源性。经过基因拼接,构建了块茎特异性表达的高等植物表达载体pPSAGB(嵌合phbB)、pBIBGC(嵌合phbC)和pPSAGCB(嵌合phbB和phbC)。并以试管薯(microtuber)为外植体经Agrobacterium介导转化了虎头、京丰、Bintje、Favorita、高原4号和88-5共6个马铃薯品种,获得49个株系。经PCR检测导入phbB的株系共有44个,对其中30个株系进行DNA dot blot分析,结果表明phbC导入呈阳性的株系有20个。深入的鉴定工作还在进行中。
Resumo:
利用发根农杆菌(Agrobacterium rhizogenes)1601,1000,1500,15834,A4,均成功地转化了中药青蒿(Artemisia annua L.)并且建立了pRi1601,pRi15834,pRiA4诱导的发根培养。pRi1601,pRi15834的发根诱导率比其它质粒高。太老或太幼的叶片不利子发根的诱导;发根主要从叶脉的伤口处萌发;带顶芽或带侧芽的叶片容易诱导根,但不一定是发根。光照有利于发根的诱导和发根的生长。以每个发根的“绝对生长速率”(Gtowth Ratio,GR)和绝对“侧根”数量(Number of Side Roots,NSR),通过大量的发根系的筛选,建立了8个发根系,1601-L-1, 1601-L-2, 1601-L-3, 1601-L-4, 15834-L-1, 1601-P-I, 16 01-P-2,15834-L-2。Southern分子检测表明,160l-1-1,1801-L-2, 1601-L-3,1601-L-4,1601-P-1,1601-P-2均为转化子。8个建立的发根系之间无论生长或者QHS的合成存在明显的差异。比较光/暗(16/8hrs),25℃条件下培养的16 01-L-1,1601-L-2,1601-L-3,1601-L-4,1601-P-l,和1601-P-2,其中16 01-L-3的生长最快,160l-L-1的生长最慢;但是,1601-L-1的QHS的含量最高(可达1. 048%),1601-1-3的QHS的含量最低。160Z-L-3,15834 -L-1和2583:1-L-2的生长速率相差不大。用盛有l000mLMS液体培养基的3000mL的锥形瓶扩大培养1601-L -3,15834-L-1和15834-L-2,转速为ll0rlpm,培养过程中发根容易形成发根球(Hairy Root Balis,HRB),HRB的形成严重影响发根的生长和QHs的合成,HpLC分析表明扩大培养发根中QHS的含量比较低。 改变MS基本培养基中的无机离子的浓度,研究不同无机离子对发根生长和QHS的合成的影响。 l、KN03为18.79×10-3M时有利于1601- L-1生长,为14. 84×10-3M时有利于QHS的合成。NH-4N0-3浓度在10.93-12. 49×10—3M范围内有利于1601-L-1生长,在0-20.62×10-3M范围内对QHS的合成影响不大,大于20. 62×lO-3M不利QHS的合成。培养基中NH-4+/N0-3-比值为0. 37-0. 4-0.52:1时有利于发根的生长,比值为0.52 - 0.58:1时有利于QHS的合成。 2、H-2P0-4-浓度为2.498×10-3M时有利于发根的生长在0-2. 498×l0-3M范围内,随着浓度的提高,促进发根的生长。培养基中的H2P4 -的浓度在0-1.249×lO-3M的范围内,随着浓度的提高,促进QHS的合成,为1.249×10-3M时QHS的含量最高。 3、培养基中最适16 01-L-1生长的Ca-2+浓度为0.198- 0.766×10-3M,大于或小于该浓度范围,显著地抑制发根的生长。但是,在0-3.695×10-3M范围内,随着培养基中Ca-2+浓度提高,促进QHS的合成,最适Ca-2+浓度为3.695×l0-3M。 4、培养基中不加Mg-2+时,完全抑制发根生长,在0. 142×10-3M-7.506×l0-3M浓度范围内,对发根生长影响没有明显的差别。但是,HPLC和UV分析发根中QHS含量,培养基中不加Mg-2+时,发根中QHS含量最高。 5、培养基中的Fe-2+浓度在0. 25 -1.0×10-3M范围内,同时有利于16 01- L-1的生长和QHS的形成。 6、培养基中最适合予16 01- L-3生长的KI浓度为2.5ppm,大于或小予该浓度均显著地抑制发根的生长,培养基中加入KI明显地降低发根中的QHS的含量。 7、H2BO3对l601-L-l生长影响不大,HPLC分析QHS的含量,培养基中的H3BO3浓度为100ppm和400ppm,QHS的含量分别为1.69mg/g和1.80mg/g(DW)。 8、Cu-2+对1601-L-3的生长影响显著,最适合1601-L-3生长的Cu-2+浓度为1.00ppm,在0 -1.00ppm的浓度范围内,随着培养基中的Cu+浓度的提高,发根的生物量不断增加。培养基中QHS合成的最适Cu2+浓度为0.05ppm,大于或小于该浓度均显著地抑制发根中QHS的合成。 比较光培养和暗培养对发根生长的影响,结果表明光照明显地促进1601-L-l的生长,暗培养明显不利于发根的生长。最适合于发根生长的温度为25℃,大于35℃显著地抑制发根的生长,影响发根的根尖细胞的正常分裂。 改变培养基中的蔗糖浓度和在发根培养的不同时期给培养基中添加蔗糖,试验结果表明蔗糖作为碳源对1601-L-3和1601-L-1的生长具有显著的影响。 (1)培养基中缺少蔗糖显著地抑制发根的生长。 (2)发根培养的前5天时间内,蔗糖浓度为30- 60glL昀培养基最有利于发根的生长,50glL的培养基中的发根生长最快,培养基中的蔗糖浓度大于60g/L小于30g/L时,发根的生物量增加较少。 (3)发根培养至第15天时,蔗糖浓度为60g/L的培养基最有利予发根的生物量的增加。发根培养至30天时,蔗糖浓度为60-90g/L的培养基,发根的生物量的增加相差不大,但是为蔗糖浓度为30-40g/L的培养基中的发根生物量一倍。 (4)发根培养过程中,分别于第5和15天给蔗糖浓度为30g/L的培养基中添加一次或二次蔗糖,使培养基中的蔗糖终浓度相当于60g/L或90g/L,培养至30天时,添加蔗糖的培养基中的发根的干重生物量相当于不添加蔗糖培养基中的发根生物量一倍,相当于初始蔗糖浓度为60g/L和90g/L培养基中发根的生物量。 (5)随着培养基中蔗糖浓度的提高,发根干重/鲜重比显著增加。培养基中的蔗糖的消耗量与发根生物量的增加呈正相关,蔗糖消耗越多,发根生物量的增加越大。 比较pH值对发根生长和QHS合成的影响表明,灭菌前pH值在5.O-6.5范围内的培养基适合予1601-L-1的生长,小于5.O不利于发根的生长,pH5.8有利于1601-1-1生长和QHS的生物合成。发根收获时培养基中的pH值一般为4.5-5.2. pH7.O抑制发根的生长,pHl0.O对发根具有强烈的致死作用。发根在培养过程中,对培养基中的pH值具有显著的调节作用,发根能在很短的时间内(24- 48hrs)使pl:l值为5.8、6.4、7.0培养基降低到pH4. 5-5.2,pH为5.8的培养基有利于QHS合成。 比较不同基本培养基对发根生长和QHS合成的影响,试验结果表明N6、DCR、Litvay培养基有利于1601-L-1的生长,WS、White、B5培养基不利于发根的生长。DCR培养基中的QHS含量最高。 根据三水平试验选用三水平正交表来安排试验的原则,选用三水平正交表L7(3-),研究多因子效应对发根生长和QHS合成的影响,试验结果表明,Mg2+,Fe2+,Mn-2+,NH4NO3,KN03 ,KI,Ca-2+为发根生长的主要因子,NH4N03,KNOs,Mg2+,Ca2+,肌醇为QHS合成的主要因子。 通过TLC分析发根中QHS和其它化学成分,同时比较发根和无菌苗及野生植株的化学成分,发根和无菌苗均能合成包括QHS在内的野生青蒿叶片中的大部分非挥发性的化台 物。 研究青蒿植株在发育过程中QHS的含量的变化以及发根、无菌苗和野生青蒿中QHS的合成,HP分析结果表明,l、不同的单株青蒿之间的QHS量相差很大。2、同一植株幼 叶的QHS含量比老叶的QHS含量高。3、不同单株青蒿之间达到最高QHS含量的时间不一样,开花期或开花之前。4、无菌苗(带根)或者不带根丛生芽均能合成QHS,但是带根的无菌蕾的QHS量比丛生芽中的QIS的含量高。5、不同发根农杆菌转化的发根系1601-L-1和15834-L-1都能合成QHS。
Resumo:
本文通过根农杆菌(Agrobacterium tumfaciens)介导法分别将Signal和KDEL修饰的豇豆胰蛋白酶抑制剂(Cowpea trypsin inhibitor, CpTI)基因、豌豆外源凝集素(Pea lectin, P-Lec)和大豆Kunitz型胰蛋白酶抑制剂(Soybean Kunitz typsin inhibitor, SKTI)双价抗虫基因、雪花莲外源凝集素(Galanthus nivals agglutinin, GNA)基因以及高效复合启动子OM控制的苏云金杆菌(Bacillus thuringiensis, B.t.)杀虫毒蛋白基因导入了陆地棉(Gossypium hirsutum L.)栽培品种新陆早1号、新陆中2号、晋棉7号、冀合321、辽9和晋棉12号,并获得了大批转基因再生植株。 实验中对影响棉花转化和再生的一些条件进行了研究,从根农杆菌培养、棉花无菌苗的制备、转化操作和共培养等方面对转化条件进行了探讨;从激素配化、植物表达载体、外植体类型、基因型等方面对抗性愈伤组织的诱导进行了摸索;从激素、从碳源、培养容器、pH值、抗褐化剂及固化剂的选择等方面对影响植株再生的条件进行了优化。 本文开创性地采用嫁接代替移栽,从而极大地提高了转化植株定植成活率,缩短了缓苗时间并增加了转化植株当代的繁殖系数。 在建立了一套较为高效的陆地棉转化及再生系统基础上,本文还进行了其它转化方式和转化体系的初步探讨。利用棉花幼嫩种子无菌苗下胚轴作为外植体,通过改变愈伤组织诱导培养基配方面提高胚性愈伤组织的诱导频率,进而得到更多的体细胞胚状和再生植株,缩短再生周期;尝试用胚性愈伤组织作为外植体的根农杆菌介导法转化,确定了一些与转化有关的条件;建立了一套棉花茎尖培养程序,为运用基因枪法轰击棉花茎尖分生组织或用根农杆菌直接转化茎尖分生组织,以克服根农杆菌转化棉花时体胚发生的基因型局限开辟了一条新途径。 本文还建立了一种快速鉴定转化植株后代的方法。这一简便方法还有助于进行转基因棉纯合系的筛选以及外源基因的遗传稳定性研究。 转基因植株经Npt-II ELISA、PCR、PCR Southern 检测证明外源抗虫基因CpTI、SKTI、P-lec、GNA以及B.t.基因已存在于转化植株基因组内。修饰的CpTI转基因植株抗棉铃虫(Heliothis armigera Hubner)试验结果表明,其杀虫效果显著优于前期未修饰的CpTI转化植株。P-lec和SKTI双价转基因植株抗棉铃虫试验结果表明,转基因植株对棉铃虫幼虫具有较强的杀虫活力。 目前,已获得转以上抗虫基因棉花T1代植株。为今后进一步将植物基因工程技术应用于棉花遗传改良打下了基础。
Resumo:
近年来植物重金属的耐性机制研究及抗重金属基因工程取得了很大进展。本文将来自于菜豆(Phaseolus vulgaris)的特异性重金属胁迫相关基因PvSR2 (Phaseolus vulgaris stress-related protein, PvSR)的cDNA序列克隆到大肠杆菌高效表达载体pBV221的PR PL启动子的下游,构建了原核表达载体pBV221-PvSR2。通过温度诱导,在大肠杆菌中成功地高效表达了PvSR2基因。经重金属(CdCl2)抗性检测,实验组比对照组有明显的抗性。 同时,将该基因克隆到植物转达化中间载体pCAMBEIA2301的花椰菜花椰病毒的35S启动子下游,利用根癌农杆菌(Agrobacterium tumefaciens)Ti质粒介导的遗传转化系统,成功地将该基因导入了烟草的基因组,获得了转基因植株。
Resumo:
本论文主要包括以下两部分内容: 一、真菌诱导子对青蒿发根生长和青蒿素生物合成的影响 用3种真菌诱导子[大丽花轮枝孢(Verticillium dahliae Kleb.)、葡枝根霉(Rhizopus stolonifer (Ehrenb. ex Fr.) Vuill)和束状刺盘孢(Colleto trichumdematium (Pers.) Grove)]分别处理青蒿(Ar temisia annuaL.)的发根,这3种真菌诱导子均能促进发根中青蒿素的合成,其中以大丽花轮枝孢的诱导效果最好;对细胞生长均没有明显影响。经大丽花轮枝孢处理的发根中青蒿素含量达1. 12 mg/gDW,比对照(0. 77 mg/g DW)提高45%。诱导子的作用效果与诱导子浓度、诱导子作用时间及发根的生长状态有关。对大丽花轮枝孢来说,诱导子作用的最适浓度为每毫升培养基含糖0.4 mg;发根在指数生长末期对诱导作用最敏感:在加入诱导子4d后收获发根,发根中的青蒿素含量最高。 二、早花基因FPF1、co对青蒿开花时间的影响及开花与青蒿素生物合成的相关性 1.将来源于拟南芥的早花基因Flowering Promoting Factorl (FPFl)插入到植物表达载体pBI121中,构建CaMV 35S启动子控制下含FPFl基因的植物表达载体pBI121FPF/,用含有pBI121FPF/质粒的根癌农杆菌(Agrobacterium tumefaciens)LBA4404感染青蒿(Artemisia annua L.)叶片并诱导丛生芽,经卡那霉素筛选,获得转基因抗性植株。PCR、 PCR-Southem blot及Southern blot检测表明,外源基因FPFI已整合到青蒿基因组中:RT-PCR及RT-PCR Southern blot分析表明,外源基因在转录水平上已有表达。在短日照条件下,FPF1转基因植株的开花时间较对照提前20天左右,但提早开花的转基因植株与未开花的对照其青蒿素含量无明显差异,即提早开花并不能使开花植株的青蒿素含量有所提高,开花与青蒿素合成之间可能没有直接的关系。 2.将拟南芥的早花基因CONSTANS (CO)置于CaMV 35S启动子之下,通过根癌农杆菌(Agrobacterium tumefaciens)LBA4404介导转入青蒿(Artemisia annuaL.),使之在青蒿中表达,并得到了抗性植株。PCR、PCR-Southem blot及Southemblot检测表明,外源基因co已整合到青蒿基因组中;RT-PCR及RT-PCR Southemblot分析表明,外源基因在转录水平上已有表达。在短日照条件下,co转基因植株的开花时间较对照提前2周左右,但提早开花的转基因植株的青蒿素含量与未丌花的对照无明显差异,即植株开花前青蒿素含量的提高并不是由于开花本身引起的,再次证明,开花与青蒿素合成之间可能没有直接的关系。
Resumo:
叶黄素循环被发现具有热耗散的作用后,已引起人们广泛的关注。目前普遍认为叶黄素循环的色素定位于天线色素蛋白复合体上,在跨膜质子梯度(ΔpH)形成后,玉米黄质(zeaxanthin;Z)和环氧玉米黄质(antheraxanthin;A)能够从叶绿素中吸收过多的激发能,并以热能的形式耗散到体外,从而保护光合器官免受强光的破坏。紫黄质脱环氧化酶(Violaxanthin de-epoxidase;VDE)是叶黄素循环的关键酶,存在于植物类囊体内腔中,它催化紫黄质(violaxanthin)脱环氧化生成环氧玉米黄质(A)和玉米黄质(Z)。本文利用过量表达和反义抑制技术获得两种转基因烟草植株,并用于研究紫黄质脱环氧化酶在叶黄素循环中的作用。 首先我们从烟草中克隆了编码VDE酶的基因,分别以正向和反向插入到具有潮霉素抗性选择标记的双元载体pCAMBIA1301,构建了Tvde基因的过量表达载体pCBTO和反义抑制表达载体pCBTA。然后通过根癌农杆菌(Agrobacterium tumefaciens)介导法转化烟草(Nicotiana tabacum L.),获得了过量表达和反义抑制两种转基因植株。PCR扩增潮霉素抗性基因hpt和Southern杂交检测结果表明,Tvde基因已整合到转基因烟草的基因组中,外源基因在转基因烟草基因组中以1个拷贝的形式存在。VDE酶活性测定表明,在反义抑制转化体中VDE酶活性被抑制60%,而在过量表达转化体中VDE酶活性提高了75%。通过色素的HPLC分析和荧光动力学测定结果表明,强光处理后,在反义抑制转化体和过量表达转化体中,Z的含量,DES,NPQ和Fv/Fm等数据说明转基因烟草中VDE含量与植物非光化学猝灭能力有直接关系,进而说明叶黄素循环具有热耗散的功能。