938 resultados para ABUNDANCE GRADIENTS
Resumo:
Spatial and temporal variation in the abundance of species can often be ascribed to spatial and temporal variation in the surrounding environment. Knowledge of how biotic and abiotic factors operate over different spatial and temporal scales in determining distribution, abundance, and structure of populations lies at the heart of ecology. The major part of the current ecological theory stems from studies carried out in central parts of the distributional range of species, whereas knowledge of how marginal populations function is inadequate. Understanding how marginal populations, living at the edge of their range, function is however in a key position to advance ecology and evolutionary biology as scientific disciplines. My thesis focuses on the factors affecting dynamics of marginal populations of blue mussels (Mytilus edulis) living close to their tolerance limits with regard to salinity. The thesis aims to highlight the dynamics at the edge of the range and contrast these with dynamics in more central parts of the range in order to understand the potential interplay between the central and the marginal part in the focal system. The objectives of the thesis are approached by studies on: (1) factors affecting regional patterns of the species, (2) long-term temporal dynamics of the focal species spaced along a regional salinity gradient, (3) selective predation by increasing populations of roach (Rutilus rutilus) when feeding on their main food item, the blue mussel, (4) the primary and secondary effects of local wave exposure gradients and (5) the role of small-scale habitat heterogeneity as determinants of large-scale pattern. The thesis shows that populations of blue mussels are largely determined by large scale changes in sea water salinity, affecting mainly recruitment success and longevity of local populations. In opposite to the traditional view, the thesis strongly indicate that vertebrate predators strongly affect abundance and size structure of blue mussel populations, and that the role of these predators increases towards the margin where populations are increasingly top-down controlled. The thesis also indicates that the positive role of biogenic habitat modifiers increases towards the marginal areas, where populations of blue mussels are largely recruitment limited. Finally, the thesis shows that local blue mussel populations are strongly dependent on high water turbulence, and therefore, dense populations are constrained to offshore habitats. Finally, the thesis suggests that ongoing sedimentation of rocky shores is detrimental for the species, affecting recruitment success and post-recruit survival, pushing stable mussel beds towards offshore areas. Ongoing large scale changes in the Baltic Sea, especially dilution processes with attendant effects, are predicted to substantially contract the distributional range of the mussel, but also affect more central populations. The thesis shows that in order to understand the functioning of marginal populations, research should (1) strive for multi-scale approaches in order to link ecosystem patterns with ecosystem processes, and (2) challenge the prevailing tenets that origin from research carried out in central areas that may not be valid at the edge.
Resumo:
Metanogeenit ovat hapettomissa oloissa eläviä arkkien pääryhmään kuuluvia mikrobeja, joiden ainutlaatuisen aineenvaihdunnan seurauksena syntyy metaania. Ilmakehässä metaani on voimakas kasvihuonekaasu. Yksi suurimmista luonnon metaanilähteistä ovat kosteikot. Pohjoisten soiden metaanipäästöt vaihtelevat voimakkaasti eri soiden välillä ja yhden suon sisälläkin, riippuen muun muassa vuodenajasta, suotyypistä ja kasvillisuudesta. Väitöskirjatyössä tutkittiin metaanipäästöjen vaihtelun mikrobiologista taustaa. Tutkimuksessa selvitettiin suotyypin, vuodenajan, tuhkalannoituksen ja turvesyvyyden vaikutusta metanogeeniyhteisöihin sekä metaanintuottoon kolmella suomalaisella suolla. Lisäksi tutkittiin ei-metanogeenisia arkkeja ja bakteereita, koska ne muodostavat metaanin tuoton lähtöaineet osana hapetonta hajotusta. Mikrobiyhteisöt analysoitiin DNA- ja RNA-lähtöisillä, polymeraasiketjureaktioon (PCR) perustuvilla menetelmillä. Merkkigeeneinä käytettiin metaanin tuottoon liittyvää mcrA-geeniä sekä arkkien ja bakteerien ribosomaalista 16S RNA-geeniä. Metanogeeniyhteisöt ja metaanintuotto erosivat huomattavasti happaman ja vähäravinteisen rahkasuon sekä ravinteikkaampien sarasoiden välillä. Rahkasuolta löytyi lähes yksinomaan Methanomicrobiales-lahkon metanogeeneja, jotka tuottavat metaania vedystä ja hiilidioksidista. Sarasoiden metanogeeniyhteisöt olivat monimuotoisempia, ja niillä esiintyi myös asetaattia käyttäviä metanogeeneja. Vuodenaika vaikutti merkittävästi metaanintuottoon. Talvella havaittiin odottamattoman suuri metaanintuottopotentiaali sekä viitteitä aktiivisista metanogeeneista. Arkkiyhteisön koostumus sen sijaan vaihteli vain vähän. Tuhkalannoitus, jonka tarkoituksena on edistää puiden kasvua ojitetuilla soilla, ei merkittävästi vaikuttanut metaanintuottoon tai -tuottajiin. Ojitetun suon yhteisöt kuitenkin muuttuivat turvesyvyyden mukaan. Vertailtaessa erilaisia PCR-menetelmiä todettiin, että kolmella mcrA-geeniin kohdistuvalla alukeparilla havaittiin pääosin samat ojitetun suon metanogeenit, mutta lajien runsaussuhteet riippuvat käytetyistä alukkeista. Soilla havaitut bakteerit kuuluivat pääjaksoihin Deltaproteobacteria, Acidobacteria ja Verrucomicrobia. Lisäksi löydettiin Crenarchaeota-pääjakson ryhmiin 1.1c ja 1.3 kuuluvia ei-metanogeenisia arkkeja. Tulokset ryhmien esiintymisestä hapettomassa turpeessa antavat lähtökohdan selvittää niiden mahdollisia vuorovaikutuksia metanogeenien kanssa. Tutkimuksen tulokset osoittivat, että metanogeeniyhteisön koostumus heijastaa metaanintuottoon vaikuttavia kemiallisia tai kasvillisuuden vaihteluita kuten suotyyppiä. Soiden metanogeenien ja niiden fysiologian parempi tuntemus voi auttaa ennustamaan ympäristömuutosten vaikutusta soiden metaanipäästöihin.
Resumo:
Habitat requirements of fish are most strict during the early life stages, and the quality and quantity of reproduction habitats lays the basis for fish production. A considerable number of fish species in the northern Baltic Sea reproduce in the shallow coastal areas, which are also the most heavily exploited parts of the brackish marine area. However, the coastal fish reproduction habitats in the northern Baltic Sea are poorly known. The studies presented in this thesis focused on the influence of environmental conditions on the distribution of coastal reproduction habitats of freshwater fish. They were conducted in vegetated littoral zone along an exposure and salinity gradient extending from the innermost bays to the outer archipelago on the south-western and southern coasts of Finland, in the northern Baltic Sea. Special emphasis was placed on reed-covered Phragmites australis shores, which form a dominant vegetation type in several coastal archipelago areas. The main aims of this research were to (1) develop and test new survey and mapping methods, (2) investigate the environmental requirements that govern the reproduction of freshwater fish in the coastal area and (3) survey, map and model the distribution of the reproduction habitats of pike (Esox lucius) and roach (Rutilus rutilus). The white plate and scoop method with a standardized sampling time and effort was demonstrated to be a functional method for sampling the early life stages of fish in dense vegetation and shallow water. Reed-covered shores were shown to form especially important reproduction habitats for several freshwater fish species, such as pike, roach, other cyprinids and burbot, in the northern Baltic Sea. The reproduction habitats of pike were limited to sheltered reed- and moss-covered shores of the inner and middle archipelago, where suitable zooplankton prey were available and the influence of the open sea was low. The reproduction habitats of roach were even more limited and roach reproduction was successful only in the very sheltered reed-covered shores of the innermost bay areas, where salinity remained low (< 4‰) during the spawning season due to freshwater inflow. After identifying the critical factors restricting the reproduction of pike and roach, the spatial distribution of their reproduction habitats was successfully mapped and modelled along the environmental gradients using only a few environmental predictor variables. Reproduction habitat maps are a valuable tool promoting the sustainable use and management of exploited coastal areas and helping to maintain the sustainability of fish populations. However, the large environmental gradients and the extensiveness of the archipelago zone in the northern Baltic Sea demand an especially high spatial resolution of the coastal predictor variables. Therefore, the current lack of accurate large-scale, high-resolution spatial data gathered at exactly the right time is a considerable limitation for predictive modelling of shallow coastal waters.
Resumo:
Extensive, and collocated measurements of the mass concentrations (M-B) of aerosol black carbon (BC) and (M-T) of composite aerosols were made over the Arabian Sea, tropical Indian Ocean and the Southern Ocean during a trans-continental cruise experiment. Our investigations show that MB remains extremely low(<50 ng m(-3)) and remarkably steady (in space and time) in the Southern Ocean (20 degrees S to 56 degrees S). In contrast, large latitudinal gradients exist north of similar to 20 degrees S; M-B increasing exponentially to reach as high as 2000 ng m(-3) in the Arabian Sea (similar to 8 degrees N). Interestingly, the share of BC showed a distinctly different latitudinal variation, with a peak close to the equator and decreasing on either side. Large fluctuations were seen in M-T over Southern Ocean associated with enhanced production of sea-salt aerosols in response to sea-surface wind speed. These spatio-temporal changes in M-B and its mixing ratio have important implications to regional and global climate.
Resumo:
An expression for the EMF of a nonisothermal galvanic cell, with gradients in both temperature and chemical potential across a solid electrolyte, is derived based on the phenomenological equations of irreversible thermodynamics. The EMF of the nonisothermal cell can be written as a sum of the contributions from the chemical potential gradient and the EMF of a thermocell operating in the same temperature gradient but at unit activity of the neutral form of the migrating species. The validity of the derived equation is confirmed experimentally by imposing nonlinear gradients of temperature and chemical potential across galvanic cells constructed using fully stabilized zirconia as the electrolyte. The nature of the gradient has no effect on the EMF.
Resumo:
Fecally dispersed parasites of 12 wild mammal species in Mudumalai Sanctuary, southern India, were studied, Fecal propagule densities and parasite diversity measures were correlated with host ecological variables. Host species with higher predatory pressure had lower parasite loads and parasite diversity. Host body weight, home range, population density, gregariousness, and diet did not show predicted effects on parasite loads. Measures of a! diversity were positively correlated with parasite abundance and were negatively correlated with beta diversity, Based on these data, hypotheses regarding determinants of parasite community are discussed.
Resumo:
Starved amoebae of D. discoideum aggregate and give rise to a long and thin multicellular structure called the slug. The cells within the slug eventually differentiate according to a simple anterior/posterior dichotomy. This motivates a search for gradients of putative morphogens along its axis. Calcium may be one such morphogen. On the basis of observations made by using the calcium-sensitive fluorescent dyes fura-2 and chlortetracyline, we report that there are spatial gradients in cytoplasmic and sequestered calcium in the slug. Anteriorly located and genetically defined prestalk cells (ecmA/pstA, ecmB/pstAB) contain significantly higher levels of calcium than the prespore cells in the posterior. However, the proportion of 'calcium-rich' cells in the slug is greater than that of the subset of prestalk cells defined by the expression of the ecmA or ecmB genes.
Resumo:
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.
Resumo:
Nickel orthosilicate (Ni2SiO4) has been found to decompose into its component binary oxides in oxygen potential gradients at 1373 K. Nickel oxide was formed at the high oxygen potential boundary, while silica was detected at the low oxygen potential side. Significant porosity and fissures were observed near the Ni2SiO4/SiO2 interface and the SiO2 layer. The critical oxygen partial pressure ratio required for decomposition varied from 1.63 to 2.15 as the oxygen pressures were altered from 1.01 ⊠ 105 to 2.7X 10−4 Pa, well above the dissociation pressure of Ni2SiO4. Platinum markers placed at the boundaries of the Ni2SiO4 sample indicated growth of NiO at the higher oxygen potential boundary, without any apparent transport of material to the low oxygen potential side. However, significant movement of the bulk Ni2SiO4 crystal with respect to the marker was not observed. The decomposition of the silicate occurs due to the unequal rates of transport of Ni and Si. The critical oxygen partial pressure ratio required for decomposition is related both to the thermodynamic stability of Ni2SiO4 with respect to component oxides and the ratio of diffusivities of nickel and silicon. Kinetic decomposition of multicomponent oxides, first discovered by Schmalzried, Laqua, and co-workers [H. Schmalzried, W. Laqua, and P. L. Lin, Z. Natur Forsch. Teil A 34, 192 (1979); H. Schmalzried and W. Laqua, Oxid. Met. 15, 339 (1981); W. Laqua and H. Schmalzried, Chemical Metallurgy—A Tribute to Carl Wagner (Metallurgical Society of the AIME, New York, 1981), p. 29] has important consequences for their use at high temperatures and in geochemistry.
Resumo:
The severe wear of a near eutectic aluminium silicon alloy is explored using a range of electron microscopic, spectroscopic and diffraction techniques to identify the residually strained and unstrained regions, microcracks and oxidized regions in the subsurface. In severe wear the contact pressure exceeds the elastic shakedown limit. Under this condition the primary and eutectic silicon particles fragment drastically. The fragments are transported by the matrix as it undergoes incremental straining with each cyclic contact at the asperity level. The grains are refined from similar to 2000 nm in the bulk to 30 nm in the near surface region. A large reduction in the interparticle distance compared with that for a milder stage of wear gives rise to high strain gradients which contribute to an enhancement of the dislocation density. The resulting regions of very high strain in the boundaries of the recrystallized grains as well as within the subgrains lead to the formation of microvoidskracks. This is accompanied by the formation of brittle oxides at these subsurface interfaces due to enhanced diffusion of oxygen. We believe that the abundance of such microcracks in the near surface region, primed by severe plastic deformation, is what distinguishes a severe wear regime from mild wear. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Sub-pixel classification is essential for the successful description of many land cover (LC) features with spatial resolution less than the size of the image pixels. A commonly used approach for sub-pixel classification is linear mixture models (LMM). Even though, LMM have shown acceptable results, pragmatically, linear mixtures do not exist. A non-linear mixture model, therefore, may better describe the resultant mixture spectra for endmember (pure pixel) distribution. In this paper, we propose a new methodology for inferring LC fractions by a process called automatic linear-nonlinear mixture model (AL-NLMM). AL-NLMM is a three step process where the endmembers are first derived from an automated algorithm. These endmembers are used by the LMM in the second step that provides abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual proportions are fed to multi-layer perceptron (MLP) architecture as input to train the neurons which further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. AL-NLMM is validated on computer simulated hyperspectral data of 200 bands. Validation of the output showed overall RMSE of 0.0089±0.0022 with LMM and 0.0030±0.0001 with the MLP based AL-NLMM, when compared to actual class proportions indicating that individual class abundances obtained from AL-NLMM are very close to the real observations.