996 resultados para 880
Resumo:
研究了六氯苯(HCB)对微型水生生物群落的影响及其吸附、传递过程。测定了群落的耗氧量和不同粒经颗粒物的生物量及HCB变化。试验结果显示,在6μg/L HCB影响下,群落的呼吸作用受到抑制,生物量减少。试验第1天,30.0%(质量分数,下同)的HCB以溶解态存在,26.3%吸附在0.22~2μm的颗粒物(以细菌为主)上,22.1%吸附在2~8μm的颗粒物(以鞭毛虫和藻类为主)上,21.6%吸附在大于8μm的颗粒物(以藻类和大型原生动物为主)上。48h后,溶解态的HCB逐渐减少,并由食物链低营养级向高营养级传
Resumo:
This work presents simplified 242mAm-fueled nuclear battery concept design featuring direct fission products energy conversion and passive heat rejection. Optimization of the battery operating characteristics and dimensions was performed. The calculations of power conversion efficiency under thermal and nuclear design constraints showed that 5.6 W e/kg power density can be achieved, which corresponds to conversion efficiency of about 4%. A system with about 190 cm outer radius translates into 17.8 MT mass per 100 kW e. Total power scales linearly with the outer surface area of the battery through which the residual heat is rejected. Tradeoffs between the battery lifetime, mass, dimensions, power rating, and conversion efficiency are presented and discussed. The battery can be used in a wide variety of interplanetary missions with power requirements in the kW to MW range. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
We describe the design, fabrication, and experimental demonstration of a circular Dammann grating element generating a point-spread function of two concentric rings with equal intensity. The element was fabricated using grayscale lithography, providing a smooth and accurate phase profile. As a result, we obtained high diffraction efficiency and good uniformity between the two rings.
Resumo:
Feeding ecology of three small fish species, Hypseleotris swinhonis, Ctenogobius giurinus and Pseudorasbora parva was studied seasonally in the Biandantang Lake, a small, shallow lake in central China. Gut length, adjusted for total body length, was significantly higher in spring than in other seasons for all the three species. Seasonal changes in gut length were not associated with changes in food quality. Weight of fore-gut contents, adjusted for body weight, was significantly higher in winter and spring than in summer and autumn in H. swinhonis and C. giurinus, and significantly higher in autumn than in spring and summer for P. parva. Percentage of empty fore-guts was highest in summer and lowest in spring for I-I. swinhonis and C. giurinus, and highest in winter and lowest in autumn for P. parva. Diet of the three small fishes showed apparent seasonal changes, and these changes reflected partly the seasonal fluctuations of food resources in environment. Diet breadth was high in winter and low in autumn for H. swinhonis, high in winter and low in spring and summer for C. giurinus, and high in autumn and low in spring for P. parva. Diet overlaps between pairs of species were biologically significant in most cases, except between H. swinhonis and P. parva in summer and autumn and between C. giurinus and P. parva in autumn. (C) 2000 The Fisheries Society of the British Isles.
Resumo:
Rates of maximum food consumption and growth were determined for immature mandarin fish Siniperca chuatsi (47.2-540.2 g) and Chinese snakehead Channa argus (45.0-546.2 g) at 10, 15, 20, 25, 30 and 35 degrees C. The relationship between maximum rate of food consumption (C-max), body weight (W) and temperature (T) was described by the multiple regression equations: lnC(max) = -4.880 + 0.597 lnW+0.284T - 0.0048T(2) for the mandarin fish, and lnC(max)= -6.718 + 0.522 lnW+0.440T-0.0077T(2) for the Chinese snakehead. The optimum temperature for consumption was 29.6 degrees C for the mandarin fish and 28.6 degrees C for the Chinese snakehead. The relationship between growth rate (G), body weight and temperature was ln(G+0.25)= - 0.439 - 0.500 lnW+0.270T - 0.0046T(2) for the mandarin fish, and ln(G+0.25)= - 6.150+ (0.175 - 0.026T) lnW+0.571T - 0.0078T(2) for the Chinese snakehead. The weight exponent in the growth-weight relationship was -0.83 for the mandarin fish, but decreased with increasing temperature for the Chinese snakehead. The optimum temperature for growth was 29.3 degrees C for the mandarin fish, but tended to decrease with increasing weight for the Chinese snakehead, being 30.3 degrees C for a 45-g fish, and 26.1 degrees C for a 550-g fish. (C) 1998 The Fisheries Society of the British Isles.
Resumo:
With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-aligned large-area multi-linger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880 mu m(2)) is fabricated with 2 mu m double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVCEO is 10 V and the collector-base junction breakdown voltage BVCBO is 16 V with collector doping concentration of 1 x 10(17) cm(-3) and thickness of 400 nm. The device exhibited a maximum oscillation frequency f(max) of 35.5 GHz and a cut-off frequency f(T) of 24.9 GHz at a dc bias point of I-C = 70 mA and the voltage between collector and emitter is V-CE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from 0 dBm to 21 dBm. A maximum output power of 29.9 dBm (about 977 mW) is obtained at an input power of 18.5 dBm with a gain of 11.47 dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, f(max) and f(T) are improved by about 83.9% and 38.3%, respectively.
Resumo:
We have fabricated a compact 3-dB multimode interference coupler with a large silicon-on-insulator cross section. To reduce the length of the usual symmetric interference multimode interference coupler, we propose using a parabolically tapered structure. The length of the device is 398 mum. The device has a uniformity of 0.28 dB. (C) 2001 Optical Society of America.
Resumo:
分析了980 nm波长的光在透过制作在金膜上的亚波长周期性孔阵时的透射增强现象.通过建立中心带缺陷孔的三角晶格的孔阵模型,并采用三维时域有限差分方法对该模型的透射情况进行模拟分析.结果表明通过优化孔阵周期参数可以对特定波长的光实现一定程度的选择透过性.当孔阵周期为450 nm,中心缺陷孔径为400 nm,孔阵中单个孔孔径为150 nm时,980 nm波跃光透过该孔阵时具有明显的透射增强效应,并且距孔阵表面3μm的远场光斑尺寸被局限在亚波长尺度(880 nm).研究了使用聚焦离子束在金膜上制备孔阵的工艺,成功研制了与没计尺寸一致的孔阵.这种孔阵可以集成在980 nm垂直腔面发射激光器上,用于改善器件的远场光学特性.
Resumo:
A large area multi-finger configuration power SiGe HBT device(with an emitter area of about 880μm~2)was fabricated with 2μm double-mesa technology.The maximum DC current gain β is 214.The BV_(CEO) is up to 10V,and the BV_(CBO) is up to 16V with a collector doping concentration of 1×10~(17)cm~(-3) and collector thickness of 400nm.The device exhibits a maximum oscillation frequency f_(max) of 19.3GHz and a cut-off frequency f_T of 18.0GHz at a DC bias point of I_C=30mA and V_(CE)=3V.MSG(maximum stable gain)is 24.5dB,and U(Mason unilateral gain)is 26.6dB at 1GHz.Due to the novel distribution layout,no notable current gain fall-off or thermal effects are observed in the I-V characteristics at high collector current.
Resumo:
研究了用MOCVD方法生长InGaAlN四元合金材料的生长规律,发现生长温度在800~880 ℃, 其In组分随生长温度升高而降低. 用变温光致发光谱和时间分辨谱研究了InGaAlN的光学性质.光致发光谱表明InGaAlN的发光强度随温度衰减规律与InGaN类似,但比GaN慢,室温下比GaN的发光强度大1个数量级以上.时间分辨光谱表明,在InGaAlN中存在低维结构的铟聚集区--在没有高温GaN中间层的InGaAlN材料中存在类似量子盘的二维铟聚集区;而在有高温GaN中间层的InGaAlN材料中存在类似量子点的零维铟聚集区.
Resumo:
对垂直腔面发射激光器(VCSEL)及由此制成的谐振增强型(RCE)光电探测器进行分析研究。激光器的I_(th) = 3 mA、η_d = 15%、λ_p = 839 nm和Δλ_(1/2) = 0.3 nm;作为探测器,光电流谱峰值响应在839 nm,响应谱线半宽2.4 nm、具有良好的波长选择特性,量子效率5%~35%(0 V~5 V)。优化设计顶镜反射率,还能得到量子效率峰值和半宽优化兼容的VCSEL基RCE光电探测器。
Resumo:
森林作为陆地生态系统的主体,在碳的生物地球化学循环中起着关键的作用,因此对森林生态系统生产力的研究具有重要意义。本文以长白山阔叶红松林为研究对象,在2005年7月~9月对其主要优势种红松、紫椴、蒙古栎、水曲柳的生理生态学参数进行了测定,并利用单叶尺度的光合作用-气孔导度-能量平衡耦合模型,以及冠层尺度的多层模型,对单叶尺度以及冠层尺度的光合作用进行了模拟,主要的结论有: (1)长白山阔叶红松林主要优势树种红松、紫椴、蒙古栎、水曲柳的生理生态学参数:光合有效辐射吸收率a、初始量子效率α、光饱和时的最大净光合作用速率Pmax、最大的Rubisco催化反应速率Vcmax、CO2饱和时的最大净光合作用速率Jmax有着明显且不同的季节变化。7、8月水曲柳的α值最大,分别为0.077、0.064,9月紫椴的最大,为0.051。红松的Vcmax值在7、9月为四个树种中最大的,分别为:49.085、43.072μmol•m-2•s-1,8月为水曲柳最大,为66.041μmol•m-2•s-1。 (2)对优势树种单叶尺度的净光合作用速率An和气孔对CO2的导度gsc进行模拟发现:紫椴、蒙古栎、水曲柳的An、gsc的值在7~9月要大于红松,进入植物生长末期的9月则随着生理活性的下降而迅速下降,而红松则表现较为平稳且略有上升。7月蒙古栎的An、gsc的最大值最大分别为15.055μmol•m-2•s-1、0.400 mol•m-2•s-1;8月水曲柳的最大分别为22.944μmol•m-2•s-1、0.567 mol•m-2•s-1;9月紫椴的最大分别为12.045μmol•m-2•s-1、0.249 mol•m-2•s-1。 (3)通过模拟得到:长白山阔叶红松林冠层2005年8月的净光合作用速率An有着明显的日变化特征, 8月林冠的净光合作用速率最大值可以达到44.880μmol•m-2•s-1,该月白天净光合作用速率的总量可以达到23.580 mol•m-2。通过与观测值比较发现模拟结果能够较好地反映冠层光合作用的特征。
Resumo:
In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries(1,2) and other obstacles(3,4). For nano-structured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle(5-9), because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals(10,11) in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies(12,13) did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.