939 resultados para 3D representation method
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
An inverse, current density mapping (CDM) method has been developed for the design of elliptical cross-section MRI magnets. The method provides a rapid prototyping system for unusual magnet designs, as it generates a 3D current density in response to a set of target field and geometric constraints. The emphasis of this work is on the investigation of new elliptical coil structures for clinical MRI magnets. The effect of the elliptical aspect ratio on magnet performance is investigated. Viable designs are generated for symmetric, asymmetric and open architecture elliptical magnets using the new method. Clinically relevant attributes such as reduced stray field and large homogeneous regions relative to total magnet length are included in the design process and investigated in detail. The preliminary magnet designs have several novel features.
Resumo:
Most external assessments of cervical range of motion assess the upper and lower cervical regions simultaneously. This study investigated the within and between days reliability of the clinical method used to bias this movement to the upper cervical region, namely measuring rotation of the head and neck in a position of full cervical flexion. Measurements were made using the Fastrak measurement system and were conducted by one operator. Results indicated high levels of within and between days repeatability (range of ICC2,1 values: 0.85-0.95). The ranges of axial rotation to right and left, measured with the neck positioned in full flexion, were approximately 56% and 50%, respectively of total cervical rotation, which relates well to the proportional division of rotation in the upper and lower cervical regions. These results suggest that this method of measuring rotation would be appropriate for use in subject studies where movement dysfunction is present in the upper cervical region, such as those with cervicogenic headache. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
In the Sparse Point Representation (SPR) method the principle is to retain the function data indicated by significant interpolatory wavelet coefficients, which are defined as interpolation errors by means of an interpolating subdivision scheme. Typically, a SPR grid is coarse in smooth regions, and refined close to irregularities. Furthermore, the computation of partial derivatives of a function from the information of its SPR content is performed in two steps. The first one is a refinement procedure to extend the SPR by the inclusion of new interpolated point values in a security zone. Then, for points in the refined grid, such derivatives are approximated by uniform finite differences, using a step size proportional to each point local scale. If required neighboring stencils are not present in the grid, the corresponding missing point values are approximated from coarser scales using the interpolating subdivision scheme. Using the cubic interpolation subdivision scheme, we demonstrate that such adaptive finite differences can be formulated in terms of a collocation scheme based on the wavelet expansion associated to the SPR. For this purpose, we prove some results concerning the local behavior of such wavelet reconstruction operators, which stand for SPR grids having appropriate structures. This statement implies that the adaptive finite difference scheme and the one using the step size of the finest level produce the same result at SPR grid points. Consequently, in addition to the refinement strategy, our analysis indicates that some care must be taken concerning the grid structure, in order to keep the truncation error under a certain accuracy limit. Illustrating results are presented for 2D Maxwell's equation numerical solutions.
Resumo:
In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.
Resumo:
We propose a 3D-2D image registration method that relates image features of 2D projection images to the transformation parameters of the 3D image by nonlinear regression. The method is compared with a conventional registration method based on iterative optimization. For evaluation, simulated X-ray images (DRRs) were generated from coronary artery tree models derived from 3D CTA scans. Registration of nine vessel trees was performed, and the alignment quality was measured by the mean target registration error (mTRE). The regression approach was shown to be slightly less accurate, but much more robust than the method based on an iterative optimization approach.
Resumo:
Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic and health aspects of the human life. Surface temperature time-series characterise Earth as a slow dynamics spatiotemporal system, evidencing long memory behaviour, typical of fractional order systems. Such phenomena are difficult to model and analyse, demanding for alternative approaches. This paper studies the complex correlations between global temperature time-series using the Multidimensional scaling (MDS) approach. MDS provides a graphical representation of the pattern of climatic similarities between regions around the globe. The similarities are quantified through two mathematical indices that correlate the monthly average temperatures observed in meteorological stations, over a given period of time. Furthermore, time dynamics is analysed by performing the MDS analysis over slices sampling the time series. MDS generates maps describing the stations’ locus in the perspective that, if they are perceived to be similar to each other, then they are placed on the map forming clusters. We show that MDS provides an intuitive and useful visual representation of the complex relationships that are present among temperature time-series, which are not perceived on traditional geographic maps. Moreover, MDS avoids sensitivity to the irregular distribution density of the meteorological stations.
Resumo:
OBJECTIVE To propose a method of redistributing ill-defined causes of death (IDCD) based on the investigation of such causes.METHODS In 2010, an evaluation of the results of investigating the causes of death classified as IDCD in accordance with chapter 18 of the International Classification of Diseases (ICD-10) by the Mortality Information System was performed. The redistribution coefficients were calculated according to the proportional distribution of ill-defined causes reclassified after investigation in any chapter of the ICD-10, except for chapter 18, and used to redistribute the ill-defined causes not investigated and remaining by sex and age. The IDCD redistribution coefficient was compared with two usual methods of redistribution: a) Total redistribution coefficient, based on the proportional distribution of all the defined causes originally notified and b) Non-external redistribution coefficient, similar to the previous, but excluding external causes.RESULTS Of the 97,314 deaths by ill-defined causes reported in 2010, 30.3% were investigated, and 65.5% of those were reclassified as defined causes after the investigation. Endocrine diseases, mental disorders, and maternal causes had a higher representation among the reclassified ill-defined causes, contrary to infectious diseases, neoplasms, and genitourinary diseases, with higher proportions among the defined causes reported. External causes represented 9.3% of the ill-defined causes reclassified. The correction of mortality rates by the total redistribution coefficient and non-external redistribution coefficient increased the magnitude of the rates by a relatively similar factor for most causes, contrary to the IDCD redistribution coefficient that corrected the different causes of death with differentiated weights.CONCLUSIONS The proportional distribution of causes among the ill-defined causes reclassified after investigation was not similar to the original distribution of defined causes. Therefore, the redistribution of the remaining ill-defined causes based on the investigation allows for more appropriate estimates of the mortality risk due to specific causes.
Resumo:
3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Para o projeto de qualquer estrutura existente (edifícios, pontes, veículos, máquinas, etc.) é necessário conhecer as condições de carga, geometria e comportamento de todas as suas partes, assim como respeitar as normativas em vigor nos países nos quais a estrutura será aplicada. A primeira parte de qualquer projeto nesta área passa pela fase da análise estrutural, onde são calculadas todas as interações e efeitos de cargas sobre as estruturas físicas e os seus componentes de maneira a verificar a aptidão da estrutura para o seu uso. Inicialmente parte-se de uma estrutura de geometria simplificada, pondo de parte os elementos físicos irrelevantes (elementos de fixação, revestimentos, etc.) de maneira a simplificar o cálculo de estruturas complexas e, em função dos resultados obtidos da análise estrutural, melhorar a estrutura se necessário. A análise por elementos finitos é a ferramenta principal durante esta primeira fase do projeto. E atualmente, devido às exigências do mercado, é imprescindível o suporte computorizado de maneira a agilizar esta fase do projeto. Existe para esta finalidade uma vasta gama de programas que permitem realizar tarefas que passam pelo desenho de estruturas, análise estática de cargas, análise dinâmica e vibrações, visualização do comportamento físico (deformações) em tempo real, que permitem a otimização da estrutura em análise. Porém, estes programas demostram uma certa complexidade durante a introdução dos parâmetros, levando muitas vezes a resultados errados. Assim sendo, é essencial para o projetista ter uma ferramenta fiável e simples de usar que possa ser usada para fins de projeto de estruturas e otimização. Sobre esta base nasce este projeto tese onde se elaborou um programa com interface gráfica no ambiente Matlab® para a análise de estruturas por elementos finitos, com elementos do tipo Barra e Viga, quer em 2D ou 3D. Este programa permite definir a estrutura por meio de coordenadas, introdução de forma rápida e clara, propriedades mecânicas dos elementos, condições fronteira e cargas a aplicar. Como resultados devolve ao utilizador as reações, deformações e distribuição de tensões nos elementos quer em forma tabular quer em representação gráfica sobre a estrutura em análise. Existe ainda a possibilidade de importação de dados e exportação dos resultados em ficheiros XLS e XLSX, de maneira a facilitar a gestão de informação. Foram realizados diferentes testes e análises de estruturas de forma a validar os resultados do programa e a sua integridade. Os resultados foram todos satisfatórios e convergem para os resultados de outros programas, publicados em livros, e para cálculo a mão feitos pelo autor.
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
Resumo:
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.