990 resultados para tissue differentiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary For the nutritional management of bone health and the prevention of osteoporosis it is important to identify nutrients that positively influence the bone remodeling process at the cellular level. Soy isoflavones show promising osteoprotective effects in animals and humans but their mechanism of action in bone cells is yet poorly understood. Firstly, soy tissue cultures were characterized as a new and optimized source of isoflavones. A large variability in the isoflavone content was observed and high-producing strains (46.3 mg/g dry wt isoflavones) were identified. In the Ishikawa cells bioassay, the estrogenicity of isoflavones was confirmed to be 1000 to 10000 less than 17Mestradiol and that of the malonyl forms was shown for the first time (EC50 of 350 nM and 1880 nM for malonylgenistin and malonyldaidzin, respectively). The estrogenic activity of soya tissue culture extracts correlated to their isoflavone content. Secondly, the effects of phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway, as key mediators of bone formation, were investigated. Dietary achievable concentrations of genistein and daidzein (10vM), and statins (4xM) but not 17M estradiol (10nM), induced BMP-2 gene expression (by up to 3-fold) and inhibited the cholesterol biosynthetic pathway (by up to 50%) in the human osteoblastic cell line hP0B¬tert. In addition, several plant extracts (Cyperus rotundus, Lindera benzoin and Cnidium monnieri) induced BMP-2 gene expression but this induction was not restricted to the inhibition of the cholesterol synthesis pathway neither to the estrogenicity. Finally, the gene expression profiles during hP0B-tert differentiation induced by vitamin D and dexamethasone were analyzed with the Affymetrix human GeneChip. 1665 different genes and 98 ESTs were significantly regulated. The expression profiles of bone-related genes was largely in agreement with previously documented patterns, supporting the physiological relevance of the genomic results and the hP0B-tert cell line as a valid model of human osteoblast differentiation. The expression of alternative differentiation markers during the osteogenic treatment of hP0B-tert cells indicated that the adipocyte and myoblast differentiation pathways were repressed, confirming that these culture conditions allowed only osteoblast differentiation. The gene ontology analysis identified further sub-groups of genes that may be involved in the bone formation process. Aims of the thesis In order to define new strategies for the nutritional management of bone health and for the prevention of osteoporosis the major goal of the present work was to investigate the potential of phytonutrients to positively modulate the bone formation process at the cellular level and, in particular: 1.To select and optimise alternative plant sources containing high levels of isoflavones with estrogenic activity (Chapter 3). 2.To compare the effects of statins and phytonutrients on BMP-2 gene expression and on the mevalonate synthesis pathway and to select new plant extracts with a bone anabolic potential (Chapter 4). 3.To further characterize the new human periosteal cell line, hP0B-tert, as a bone- formation model, by elucidating its gene expression profile during differentiation induced by vitamin D and dexamethasone (Chapter 5).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrathin sections of tissue cysts isolated from the brain of Toxoplasma gondii infected mice were submitted to two different methodologies derived from the periodic acid - Schiff's reagent (PAS) technique. The use of osmium tetroxide vapor as a developing agent of the aldehyde oxidation to reveal polysaccharides with periodic acid resulted in positive reaction in amylopectin granules in bradyzoites, as well as in the wall and matrix of the cysts, with excellent increment of the ultrastructural morphology. This technique can be used for study of T. gondii-host cell intracellular cycle, the differentiation tachyzoite-bradyzoite, and also for the formation of cysts into the host cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue damage resulting from chemical, mechanical, and biological injury, or from interrupted blood flow and reperfusion, is often life threatening. The subsequent tissue response involves an intricate series of events including inflammation, oxidative stress, immune cell recruitment, and cell survival, proliferation, migration, and differentiation. In addition, fibrotic repair characterized by myofibroblast transdifferentiation and the deposition of ECM proteins is activated. Failure to initiate, maintain, or stop this repair program has dramatic consequences, such as cell death and associated tissue necrosis or carcinogenesis. In this sense, inflammation and oxidative stress, which are beneficial defense processes, can become harmful if they do not resolve in time. This repair program is largely based on rapid and specific changes in gene expression controlled by transcription factors that sense injury. PPARs are such factors and are activated by lipid mediators produced after wounding. Here we highlight advances in our understanding of PPAR action during tissue repair and discuss the potential for these nuclear receptors as therapeutic targets for tissue injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During fetal life, CD4(+)CD3(-) lymphoid tissue inducer (LTi) cells are required for lymph node and Peyer's patch development in mice. In adult animals, CD4(+)CD3(-) cells are found in low numbers in lymphoid organs. Whether adult CD4(+)CD3(-) cells are LTi cells and are generated and maintained through cytokine signals has not been directly addressed. In this study we show that adult CD4(+)CD3(-) cells adoptively transferred into neonatal CXCR5(-/-) mice induced the formation of intestinal lymphoid tissues, demonstrating for the first time their bona fide LTi function. Increasing IL-7 availability in wild-type mice either by IL-7 transgene expression or treatment with IL-7/anti-IL-7 complexes increased adult LTi cell numbers through de novo generation from bone marrow cells and increased the survival and proliferation of LTi cells. Our observations demonstrate that adult CD4(+)lineage(-) cells are LTi cells and that the availability of IL-7 determines the size of the adult LTi cell pool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progenitor cells can be obtained by outgrowth from tissue explants during primary ex vivo tissue culture. We have isolated and characterized cells outgrown from neonatal mouse pancreatic explants. A relatively uniform population of cells showing a distinctive morphology emerged over time in culture. This population expressed monocyte/macrophage and hematopoietic markers (CD11b(+) and CD45(+)), and some stromal-related markers (CD44(+) and CD29(+)), but not mesenchymal stem cell (MSC)-defining markers (CD90(-) and CD105(-)) nor endothelial (CD31(-)) or stem cell-associated markers (CD133(-) and stem cell antigen-1; Sca-1(-)). Cells could be maintained in culture as a plastic-adherent monolayer in culture medium (MesenCult MSC) for more than 1 year. Cells spontaneously formed sphere clusters "pancreatospheres" which, however, were nonclonal. When cultured in appropriate media, cells differentiated into multiple mesenchymal lineages (fat, cartilage, and bone). Positive dithizone staining suggested that a subset of cells differentiated into insulin-producing cells. However, further studies are needed to characterize the endocrine potential of these cells. These findings indicate that a myelomonocytoid population from pancreatic explant outgrowths has mesenchymal differentiation potential. These results are in line with recent data onmonocyte-derivedmesenchymal progenitors (MOMPs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT Six-transmembrane protein of prostate 2 (STAMP2) is a counter-regulator of inflammation and insulin resistance according to findings in mice. However, there have been contradictory reports in humans. OBJECTIVE We aimed to explore STAMP2 in association with inflammatory and metabolic status of human obesity. DESIGN, PATIENTS, AND METHODS STAMP2 gene expression was analyzed in adipose tissue samples (171 visceral and 67 sc depots) and during human preadipocyte differentiation. Human adipocytes were treated with macrophage-conditioned medium, TNF-α, and rosiglitazone. RESULTS In visceral adipose tissue, STAMP2 gene expression was significantly decreased in obese subjects, mainly in obese subjects with type 2 diabetes. STAMP2 gene expression and protein were significantly and inversely associated with obesity phenotype measures (body mass index, waist, hip, and fat mass) and obesity-associated metabolic disturbances (systolic blood pressure and fasting glucose). In addition, STAMP2 gene expression was positively associated with lipogenic (FASN, ACC1, SREBP1, THRSP14, TRα, and TRα1), CAV1, IRS1, GLUT4, and CD206 gene expression. In sc adipose tissue, STAMP2 gene expression was not associated with metabolic parameters. In both fat depots, STAMP2 gene expression in stromovascular cells was significantly higher than in mature adipocytes. STAMP2 gene expression was significantly increased during the differentiation process in parallel to adipogenic genes, being increased in preadipocytes derived from lean subjects. Macrophage-conditioned medium (25%) and TNF-α (100 ng/ml) administration increased whereas rosiglitazone (2 μM) decreased significantly STAMP2 gene expression in human differentiated adipocytes. CONCLUSIONS Decreased STAMP2 expression (mRNA and protein) might reflect visceral adipose dysfunction in subjects with obesity and type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT Expression and activity of the main lipogenic enzymes is paradoxically decreased in obesity, but the mechanisms behind these findings are poorly known. Breast Cancer 1 (BrCa1) interacts with acetyl-CoA carboxylase (ACC) reducing the rate of fatty acid biosynthesis. In this study, we aimed to evaluate BrCa1 in human adipose tissue according to obesity and insulin resistance, and in vitro cultured adipocytes. RESEARCH DESIGN AND METHODS BrCa1 gene expression, total and phosphorylated (P-) BrCa1, and ACC were analyzed in adipose tissue samples obtained from a total sample of 133 subjects. BrCa1 expression was also evaluated during in vitro differentiation of human adipocytes and 3T3-L1 cells. RESULTS BrCa1 gene expression was significantly up-regulated in both omental (OM; 1.36-fold, p = 0.002) and subcutaneous (SC; 1.49-fold, p = 0.001) adipose tissue from obese subjects. In parallel with increased BrCa1 mRNA, P-ACC was also up-regulated in SC (p = 0.007) as well as in OM (p = 0.010) fat from obese subjects. Consistent with its role limiting fatty acid biosynthesis, both BrCa1 mRNA (3.5-fold, p<0.0001) and protein (1.2-fold, p = 0.001) were increased in pre-adipocytes, and decreased during in vitro adipogenesis, while P-ACC decreased during differentiation of human adipocytes (p = 0.005) allowing lipid biosynthesis. Interestingly, BrCa1 gene expression in mature adipocytes was restored by inflammatory stimuli (macrophage conditioned medium), whereas lipogenic genes significantly decreased. CONCLUSIONS The specular findings of BrCa1 and lipogenic enzymes in adipose tissue and adipocytes reported here suggest that BrCa1 might help to control fatty acid biosynthesis in adipocytes and adipose tissue from obese subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Alternative macrophages (M2) express the cluster differentiation (CD) 206 (MCR1) at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages) gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23). The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6). RESULTS MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005) in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3). AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures. CONCLUSION A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the World Health Organization, 5.1% of blindnesses or visual impairments are related to corneal opacification. Cornea is a transparent tissue placed in front of the color of the eye. Its transparency is mandatory for vision. The ocular surface is a functional unit including the cornea and all the elements involved in maintaining its transparency i.e., the eyelids, the conjunctiva, the lymphoid tissue of the conjunctiva, the limbus, the lacrymal glands and the tear film. The destruction of the ocular surface is a disease caused by : traumatisms, infections, chronic inflammations, cancers, toxics, unknown causes or congenital abnormalities. The treatment of the ocular surface destruction requires a global strategy including all the elements that are involved in its physiology. The microenvironnement of the ocular surface must first be restored, i.e., the lids, the conjunctiva, the limbus and the structures that secrete the different layers of the tear film. In a second step, the transparency of the cornea can be reconstructed. A corneal graft performed in a healthy ocular surface microenvironnement will have a better survival rate. To achieve these goals, a thorough understanding of the renewal of the epitheliums and the role of the epithelial stem cells are mandatory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2(Cre/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism by which the immune system produces effector and memory T cells is largely unclear. To allow a large-scale assessment of the development of single naive T cells into different subsets, we have developed a technology that introduces unique genetic tags (barcodes) into naive T cells. By comparing the barcodes present in antigen-specific effector and memory T cell populations in systemic and local infection models, at different anatomical sites, and for TCR-pMHC interactions of different avidities, we demonstrate that under all conditions tested, individual naive T cells yield both effector and memory CD8+ T cell progeny. This indicates that effector and memory fate decisions are not determined by the nature of the priming antigen-presenting cell or the time of T cell priming. Instead, for both low and high avidity T cells, individual naive T cells have multiple fates and can differentiate into effector and memory T cell subsets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excessive accumulation of the adipose tissue is at the origin of the obesity. However its severity has no direct correlation with the comorbidities. These last ones are rather linked to the type of distribution of the fat than to its total quantity. The morphological and functional analysis of the adipose tissue reveals specific differences in its localization. The adipose tissue is thus a complex organ constituted by several cell types having various capacities of hypertrophy, hyperplasia and differentiation. While the first one is more predominant in the subcutaneous compartment, where the cell size is big, the others are more specific of the visceral adipocytes. Finally the severity of the obesity is linked to hypertrophy, while the comorbidities are associated with the capacity of proliferation and differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BAFF (BLyS, TALL-1, THANK, zTNF4) is a member of the TNF superfamily that specifically regulates B lymphocyte proliferation and survival. Mice transgenic (Tg) for BAFF develop an autoimmune condition similar to systemic lupus erythematosus. We now demonstrate that BAFF Tg mice, as they age, develop a secondary pathology reminiscent of Sjögren's syndrome (SS), which is manifested by severe sialadenitis, decreased saliva production, and destruction of submaxillary glands. In humans, SS also correlates with elevated levels of circulating BAFF, as well as a dramatic upregulation of BAFF expression in inflamed salivary glands. A likely explanation for disease in BAFF Tg mice is excessive survival signals to autoreactive B cells, possibly as they pass through a critical tolerance checkpoint while maturing in the spleen. The marginal zone (MZ) B cell compartment, one of the enlarged B cell subsets in the spleen of BAFF Tg mice, is a potential reservoir of autoreactive B cells. Interestingly, B cells with an MZ-like phenotype infiltrate the salivary glands of BAFF Tg mice, suggesting that cells of this compartment potentially participate in tissue damage in SS and possibly other autoimmune diseases. We conclude that altered B cell differentiation and tolerance induced by excess BAFF may be central to SS pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPARgamma) is an essential regulator of adipocyte differentiation, maintenance, and survival. Deregulations of its functions are associated with metabolic diseases. We show here that deletion of one PPARgamma allele not only affected lipid storage but, more surprisingly, also the expression of genes involved in glucose uptake and utilization, the pentose phosphate pathway, fatty acid synthesis, lipolysis, and glycerol export as well as in IR/IGF-1 signaling. These deregulations led to reduced circulating adiponectin levels and an energy crisis in the WAT, reflected in a decrease to nearly half of its intracellular ATP content. In addition, there was a decrease in the metabolic rate and physical activity of the PPARgamma(+/-) mice, which was abolished by thiazolidinedione treatment, thereby linking regulation of the metabolic rate and physical activity to PPARgamma. It is likely that the PPARgamma(+/-) phenotype was due to the observed WAT dysfunction, since the gene expression profiles associated with metabolic pathways were not affected either in the liver or the skeletal muscle. These findings highlight novel roles of PPARgamma in the adipose tissue and underscore the multifaceted action of this receptor in the functional fine tuning of a tissue that is crucial for maintaining the organism in good health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TGF-β and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.