997 resultados para tin-doped magnetite


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to investigate optically excited electronic transport in Er-doped SnO2, thin films are excited with the fourth harmonic of an Nd:YAG laser (266nm) at low temperature, yielding conductivity decay when the illumination is removed. Inspection of these electrical characteristics aims knowledge for electroluminescent devices operation. Based on a proposed model where trapping defects present thermally activated cross section, the capture barrier is evaluated as 140, 108, 100 and 148 meV for doped SnO2, thin films with 0.0, 0.05, 0. 10 and 4.0 at% of Er, respectively. The undoped film has vacancy levels as dominating, whereas for doped films. there are two distinct trapping centers: Er3+ substitutional at Sn lattice sites and Er3+ located at grain boundary. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ta2O5 doped SnO2 varistor systems containing 0.5 mol% ZnO and 0.5 mol% Coo were prepared by mixed oxide method. Considering that ZnO and Coo oxides are densification additives only the SnO(2)center dot ZnO center dot CoO ceramics cannot exhibit electrical nonlinearity. A small amount of Ta2O5 improves the nonlinear properties of the samples greatly. The height and width of the defect barriers were calculated. It was found that samples doped with 0.05 mol% Ta2O5 exhibit the highest density (98.5%), the lowest electric breakdown field (E-b = 1100 V/cm) and the highest coefficient of nonlinearity (alpha = 11.5). The effect of Ta2O5 dopant could be explained by the substitution of Ta5+ by Sn4+. A grain-boundary defect barrier model for the SnO(2)center dot ZnO center dot CoO center dot Ta2O5 varistor system was also introduced. (c) 2004 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical oxidation of cyanide in alkaline media was studied at different pH levels on SnO2 doped with Sb supported on titanium, at 25 degrees C, the electrooxidation of CN- at constant current follows a first-order rate law with a half life of t(1/2) = 35 min on SnO2-SbOx electrodes and t(1/2) = 69 min on SnO2-SbOx-RuO2 electrodes, in K2SO4(aq), pH 12, the reaction rate increases with the applied current and tends to reach a plateau when j > 20 mA cm(-2), In the pH range 10-13.5 the reaction rate diminishes as pH is increased owing to an increasing competition between CN- and OH- ions for the electrode surface. Addition of chloride to the solution does not alter the rate law but increases the reaction rate, A mechanism is proposed to explain the observed behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin on the oxide form, alone or doped with others metals, has been extensively used as gas sensor, thus, this work reports on the preparation and kinetic parameters regarding the thermal decomposition of Sn(II)-ethylenediaminetetraacetate as precursor to SnO2. Thus, the acquaintance with the kinetic model regarding the thermal decomposition of the tin complex may leave the door open to foresee, whether it is possible to get thin film of SnO2 using Sn(II)-EDTA as precursor besides the influence of dopants added.The Sn(II)-EDTA soluble complex was prepared in aqueous medium by adding of tin(II) chloride acid solution to equimolar amount of ammonium salt from EDTA under N-2 atmosphere and temperature of 50degreesC arising the pH similar to 4. The compound was crystallized in ethanol at low-temperature and filtered to eliminate the chloride ions, obtaining the heptacoordinated chelate with the composition H2SnH2O(CH2N(CH2COO)(2))(2).0.5H(2)O.Results from TG, DTG and DSC curves under inert and oxidizing atmospheres indicate the presence of water coordinated to the metal and that the ethylenediamine fraction is thermally more stable than carboxylate groups. The final residue from thermal decomposition was the SnO2 characterized by X-ray as a tetragonal rutile phase.Applying the isoconversional Wall-Flynn-Ozawa method on the DSC curves, average activation energy: E-a = 183.7 +/- 12.7 and 218.9 +/- 2.1 kJ mol(-1), and pre-exponential factor: log A = 18.85 +/- 0.27 and 19.10 +/- 0.27 min(-1), at 95% confidence level, could be obtained, regarding the loss of coordinated water and thermal decomposition of the carboxylate groups, respectively. The E-a and logA also could be obtained applying isoconventional Wall-Flynn method on the TG curves.From E-a and log A values, Dollimore and Malek procedures could be applied suggesting R3 (contracting volume) and SB (two-parameter model) as the kinetic model to the loss of coordinated water (177-244degreesC) and thermal decomposition of the carboxylate groups (283-315degreesC), respectively. Simulated and experimental normalized DTG and DSC curves besides analysis of residuals check these kinetic models. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the preparation and characterization of (SnO2) thin films doped with 7 mol% Sb2O3. The films were prepared by the polymeric precursor method, and deposited by spin-coating, all of them were deposited on amorphous silica substrate. Then, we have studied the thickness effect on the microstrutural, optical and electric properties of these samples. The microstructural characterization was carried out by X-ray diffraction (XRD) and scanning tunneling microscopy (STM). The electrical resistivity measurements were obtained by the van der Pauw four-probe method. UV-visible spectroscopy and ellipsometry were carried out for the optical characterization. The films present nanometric grains in the order of 13 nm, and low roughness. The electrical resistivity decreased with the increase of the film thickness and the smallest measured value was 6.5 x 10(-3) Omega cm for the 988 nm thick film. The samples displayed a high transmittance value of 80% in the visible region. The obtained results show that the polymeric precursor method is effective for the TCOs manufacturing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism involved in the Tm(3+)((3)F(4)) -> Tb(3+)((7)F(0,1,2)) energy transfer as a function of the Tb concentration was investigated in Tm:Tb-doped germanate (GLKZ) glass. The experimental transfer rate was determined from the best fit of the (3)F(4) luminescence decay due to the Tm -> Tb energy transfer using the Burshtein model. The result showed that the 1700 nm emission from (3)F(4) can be completely quenched by 0.8 mol% of Tb(3+). As a consequence, the (7)F(3) state of Tb(3+) interacts with the (3)H(4) upper excited state of TM(3+) slighting decreasing its population. The effective amplification coefficient beta(cm(-1)) that depends on the population density difference Delta n = n((3)H(4))-n((3)F(4)) involved in the optical transition of Tm(3+) (S-band) was calculated by solving the rate equations of the system for continuous pumping with laser at 792 nm, using the Runge-Kutta numerical method including terms of fourth order. The population density inversion An as a function of Tb(3+) concentration was calculated by computational simulation for three pumping intensities, 0.2, 2.2 and 4.4 kWcm(-2). These calculations were performed using the experimental Tm -> Tb transfer rates and the optical constants of the Tm (0.1 mol%) system. It was demonstrated that 0.2 mol% of Tb(3+) propitiates best population density inversion of Tin(3+) maximizing the amplification coefficient of Tm-doped (0.1 mol%) GLKZ glass when operating as laser intensity amplification at 1.47 mu m. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SnO2 ceramics doped with different amounts of Co, Cr or Nb were investigated using visible and infrared spectroscopy at room temperature. Based on the observed d-d transitions the valence states of incorporated dopants were determined. Values of the optical band-gap were calculated in all samples. The infrared spectra of the samples displayed variations in the position, relative intensity and width of the bands, which were attributed to the presence of dopants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical excitation of Ce3+-doped SnO2 thin films, obtained by the sol-gel-dip-coating technique, is carried out and the effects on electrical transport are evaluated. Samples are doped with O. lat% of Ce, just above the saturation limit. The excitation is done with an intensity-controlled halogen-tungsten lamp through an interference filter, yielding an excitation wavelength of 513nm, 9 nm wide (width at half intensity peak). Irradiation at low temperature (25K) yields a conductivity increase much lower than above bandgap light. Such a behavior assures the ionization of intra-bandgap defect levels, since the filter does not allow excitation of electron-hole pairs, what would happen only in the UV range (below about 350nm). The decay of intra-bandgap excited levels in the range 250-320 K is recorded, leading to a temperature dependent behavior related to a thermally excited capture cross section for the dominating defect level. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doping tin dioxide (SnO2) with pentavalent Sb5+ ions leads to an enhancement in the electrical conductivity of this material, because Sb5+ substitutes Sn4+ in the matrix, promoting an electronic density increase in the conduction band, due to the donor-like nature of the doping atom. Results of computational simulation, based on the Density Functional Theory (DFT), of SnO2:4%Sb and SnO2:8%Sb show that the bandgap magnitude is strongly affected by the doping concentration, because the energy value found for 4 at%Sb and 8 at%Sb was 3.27 eV and 3.13 eV, respectively, whereas the well known value for undoped SnO2 is about 3.6 eV. Sb-doped SnO2 thin films were obtained by the sol-gel-dip-coating technique. The samples were submitted to excitation with below theoretical bandgap light (450 nm), as well as above bandgap light (266 nm) at low temperature, and a temperature-dependent increase in the conductivity is observed. Besides, an unusual temperature and time dependent decay when the illumination is removed is also observed, where the decay time is slower for higher temperatures. This decay is modeled by considering thermally activated cross section of trapping centers, and the hypothesis of grain boundary scattering as the dominant mechanism for electronic mobility. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SnO2:2 at. %Er xerogel samples were obtained by sol-gel technique from colloidal suspensions with distinct pHs. The evaluation of critical regions inside the nanocrystallite is fundamental for the interpretation of the influence of pH on the emission data. In this way, the nanocrystal depletion layer thickness was obtained with the help of photoluminescence, Raman, X-ray diffraction, and field-emission gun scanning electron microscopy measurements. It was observed that acid suspensions (pH < 7) lead to high surface disorder in which a larger number of cross-linked bonds Sn-O-Sn among nanoparticles are present. For these samples, the nanoparticle depletion layer is larger as compared to samples obtained from other pH. Photoluminescence measurement in the near infrared region indicates that the emission intensity of the transition 4I13/2 → 4I15/2 is also influenced by the pH of the starting colloidal suspension, generating peaks more or less broadened, depending on location of Er3+ ions in the SnO2 lattice (high or low symmetry sites). © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin dioxide (SnO2) thin films doped with Eu3+, are deposited by the sol-gel-dip-coating process on top of GaAs films, which is deposited by resistive evaporation on glass substrate. This heterojunction assembly presents luminescence from the rare-earth ion, unlike the SnO2 deposition directly on a glass substrate, where emissions from the Eu3+ transitions are absent. The Eu3+ transitions are clearly identified and are similar to the observation on SnO2 pressed powder (pellets), thermally treated at much higher temperatures. However, in the form of heterojunction films, the Eu emission comes along a broad band, located at higher energy compared to Eu3+ transitions, which is blue-shifted as the thermal annealing temperature increases. The size of nanocrystallites points toward quantum confinement or electron transfer between oxygen vacancies, originated from the disorder in the material, and trivalent rare-earth ions, which present acceptor-like character in this matrix. This electron transfer may relax for higher temperatures in the case of pellets, and the broad band is eliminated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition-metal (TM)-doped diluted magnetic oxides (DMOs) have attracted attention from both experimental and theoretical points of view due to their potential use in spintronics towards new nanostructured devices and new technologies. In the present work, we study the magnetic properties of Sn0.96TM0.04O2 and Sn0.96TM0.04O1.98(V (O))(0.02), where TM = Fe and Co, focusing in particular in the role played by the presence of O vacancies nearby the TM. The calculated total energy as a function of the total magnetic moment per cell shows a magnetic metastability, corresponding to a ground state, respectively, with 2 and 1 mu(B)/cell, for Fe and Co. Two metastable states, with 0 and 4 mu(B)/cell were found for Fe, and a single value, 3 mu(B)/cell, for Co. The spin-crossover energies (E (S)) were calculated. The values are E (S) (0/2) = 107 meV and E (S) (4/2) = 25 meV for Fe. For Co, E (S) (3/1) = 36 meV. By creating O vacancies close to the TM site, we show that the metastablity and E (S) change. For iron, a new state appears, and the state with zero magnetic moment disappears. The ground state is 4 mu(B)/cell instead of 2 mu(B)/cell, and the energy E (S) (2/4) is 30 meV. For cobalt, the ground state is then found with 3 mu(B)/cell and the metastable state with 1 mu(B)/cell. The spin-crossover energy E (S) (1/3) is 21 meV. Our results suggest that these materials may be used in devices for spintronic applications that require different magnetization states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past decade the study of superparamagnetic nanoparticles has been intensively developed for many biomedical applications such as magnetically assisted drug delivery, MRI contrast agents, cells separation and hyperthermia therapy. All of these applications require nanoparticles with high magnetization, equipped also with a suitable surface coating which has to be non-toxic and biocompatible. In this master thesis, the silica coating of commercially available magnetic nanoparticles was investigated. Silica is a versatile material with many intrinsic features, such as hydrophilicity, low toxicity, proper design and derivatization yields particularly stable colloids even in physiological conditions. The coating process was applied to commercial magnetite particles dispersed in an aqueous solution. The formation of silica coated magnetite nanoparticles was performed following two main strategies: the Stöber process, in which the silica coating of the nanoparticle was directly formed by hydrolysis and condensation of suitable precursor in water-alcoholic mixtures; and the reverse microemulsions method in which inverse micelles were used to confine the hydrolysis and condensation reactions that bring to the nanoparticles formation. Between these two methods, the reverse microemulsions one resulted the most versatile and reliable because of the high control level upon monodispersity, silica shell thickness and overall particle size. Moving from low to high concentration, within the microemulsion region a gradual shift from larger particles to smaller one was detected. By increasing the amount of silica precursor the silica shell can also be tuned. Fluorescent dyes have also been incorporated within the silica shell by linking with the silica matrix. The structure of studied nanoparticles was investigated by using transmission electron microscope (TEM) and dynamic light scattering (DLS). These techniques have been used to monitor the syntetic procedures and for the final characterization of silica coated and silica dye doped nanoparticles. Finally, field dependent magnetization measurements showed the magnetic properties of core-shell nanoparticles were preserved. Due to a very well defined structure that combines magnetic and luminescent properties together with the possibility of further functionalization, these multifunctional nanoparticles are potentially useful platforms in biomedical fields such as labeling and imaging.