Photo-Induced Conductivity of Heterojunction GaAs/Rare-Earth Doped SnO2


Autoria(s): Bueno, Cristina de Freitas; Oliveira Machado, Diego Henrique de; Pineiz, Tatiane de Fatima; Scalvi, Luis Vicente de Andrade
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

03/12/2014

03/12/2014

01/07/2013

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Rare-earth doped (Eu3+ or Ce3+) thin layers of tin dioxide (SnO2) are deposited by the sol-gel-dip-coating technique, along with gallium arsenide (GaAs) films, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, because it may combine the emission from the rare-earth-doped transparent oxide, with a high mobility semiconductor. Trivalent rare-earth-doped SnO2 presents very efficient emission in a wide wavelength range, including red (in the case of Eu3+) or blue (Ce3+). The advantage of this structure is the possibility of separation of the rare-earth emission centers, from the electron scattering, leading to an indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films. Monochromatic light excitation shows up the role of the most external layer, which may act as a shield (top GaAs), or an ultraviolet light absorber sink (top RE-doped SnO2). The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels in the semiconductors junction with two-dimensional electron gas (2DEG) behavior, which are evaluated by excitation with distinct monochromatic light sources, where the samples are deposited by varying the order of layer deposition.

Formato

831-838

Identificador

http://dx.doi.org/10.1590/S1516-14392013005000060

Materials Research-ibero-american Journal Of Materials. Sao Carlos: Univ Fed Sao Carlos, Dept Engenharia Materials, v. 16, n. 4, p. 831-838, 2013.

1516-1439

http://hdl.handle.net/11449/113513

10.1590/S1516-14392013005000060

S1516-14392013005000060

WOS:000322727600019

S1516-14392013000400019.pdf

Idioma(s)

eng

Publicador

Univ Fed Sao Carlos, Dept Engenharia Materials

Relação

Materials Research-ibero-american Journal of Materials

Direitos

openAccess

Palavras-Chave #tin dioxide #gallium arsenide #heterojunction #interface #electrical conductivity
Tipo

info:eu-repo/semantics/article