998 resultados para support acidity, tetraline hydrogenation, bifunctional catalysts


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasingly stringed regulations for diesel engine emissions have a significant impact on the required efficiency of DOC. Lowered DOC oxidation efficiency due to thermal aging effects influences the efficiency of the exhaust aftertreatment systems downstream of the DOC. In this work carried out in the Jean Le Rond d’Alembert Institute the effect of hydrothermal aging on the reactivity and structure of a commercial DOC was investigated. The characterization of the catalytic performance was carried out on a synthetic gas bench using carrots catalyst under conditions close to the realistic conditions i.e. using a synthetic gas mixture, representative of the exhaust gases from diesel engines. Different structural characterization techniques were performed: textural and morphological proprieties were analyzed by BET and TEM, the characterization of the presented crystallographic phases was performed by DRX and the determination of the number of reducible species was possible by TPR. TEM results shown, an increase of the metal particle size with the aging caused by the agglomeration of metal particles, revealing the presence of metal sintering. DRX results also suggest the presence of support sintering. Furthermore, DRX and BET results unexpectedly reveal that the most drastic aging conditions used actually activated the catalyst surface. As expected, the aging affected negatively the catalyst performance on the oxidation of methane and CO, however an improvement of the NO oxidation performance with the aging was observed. Nevertheless, for the aging conditions used, catalytic activity results show that the influence of aging in DOC performance was not significant, and therefore, more drastic aging conditions must be used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paper submitted to e-conservation Journal: Maria Leonor Oliveira, Leslie Carlyle, Sara Fragoso, Isabel Pombo Cardoso and João Coroado, “Investigations into paint delamination and consolidation of an oil painting on copper support”.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the synthesis and characterisation of Ni(II) complexes of the following neutral bidentate nitrogen ligands containing pyrazole (pz), pyrimidine (pm) and pyridine (py) aromatic rings: 2-pyrazol-1-yl-pyrimidine (pzpm), 2-(4-methyl-pyrazol-1-yl)-pyrimidine (4-Mepzpm), 2-(4-bromo-pyrazol-1-yl)-pyrimidine (4-Brpzpm), 2-(3,5-dimethyl-pyrazol-1-yl)-pyrimidine (pz*pm), 2-pyrazol-1-yl-pyridine (pzpy) and bis(3,5-dimethylpyrazol-1-yl)phenylmethane (bpz*mph). The complexes [NiBr2(pzpm)] (1), [NiBr2(4-Mepzpm)] (2), [NiBr2(4-Brpzpm)] (3), [NiBr2(pz*pm)] (4), [NiBr2(pzpy)] (5) and [NiBr2(bpz*mph)] (6) were tested as catalysts for ethylene polymerisation, in the presence of the cocatalysts methylaluminoxane (MAO) or diethylaluminium chloride (AlEt2Cl), the catalyst systems 1-3/MAO showing moderate to high activities up to the temperature of 20 °C only in the presence of MAO, whereas 4-6/MAO revealed to be inactive. Other related Pd(II) complexes, already reported in previous works, such as [PdClMe(pzpm)], [PdClMe(pz*pm)], [PdClMe(pzpy)] and [PdClMe(bpz*mph)], also showed to be inactive in the polymerisation of ethylene, when activated by MAO or AlEt2Cl. Selected samples of polyethylene products were characterised by GPC/SEC, 1H and 13C NMR and DSC, showing to be low molecular weight polymers with Mn values ranging from ca. 550 to 1500 g mol−1 and unusually low dispersities of 1.2–1.7, with total branching degrees generally varying between 2 and 12%, melting temperatures from 40 to 120 °C and crystallinities from 40 to 70%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-hydrogenation of alkynes has industrial and academic relevance on a large scale. To increase the activity, selectivity and lifetime of monometallic catalysts, the development of bimetallic catalysts has been investigated. 1-Heptyne hydrogenation over low-loaded Pd and Ni monometallic and PdNi bimetallic catalysts was studied in liquid phase at mild conditions. XPS results suggest that nickel addition to Pd modifies the electronic state of palladium as nickel loading is increased. Low-loaded Pd catalysts showed the highest selectivities (> 95%). The most active prepared catalyst, PdNi(1%), was more selective than the Lindlar catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of the different hydrocarbon reactions over Ni doped WO3-ZrO2 catalysts was performed. Ni was found as NiO at low Ni concentration while at high Ni concentrations a small fraction was present as a metal. For both cases, Ni strongly modified total acidity and concentration of strong acid sites. In the cyclohexane dehydrogenation reaction, Ni addition promotes both benzene and methyl cyclopentane production. The hydroconversion activity (n-butane and n-octane) increases with the augment of total acidity produced by Ni. The selectivity to reaction products is modified according to the acid strength distribution changes produced by Ni addition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of metal loading and support surface functional groups (SFG) on methane dry reforming (MDR) over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is based on 5 articles which deal with reaction mechanisms of the following selected industrially important organic reactions: 1. dehydrocyclization of n-butylbenzene to produce naphthalene 2. dehydrocyclization of 1-(p-tolyl)-2-methylbutane (MB) to produce 2,6-dimethylnaphthalene 3. esterification of neopentyl glycol (NPG) with different carboxylic acids to produce monoesters 4. skeletal isomerization of 1-pentene to produce 2-methyl-1-butene and 2-methyl-2-butene The results of initial- and integral-rate experiments of n-butylbenzene dehydrocyclization over selfmade chromia/alumina catalyst were applied when investigating reaction 2. Reaction 2 was performed using commercial chromia/alumina of different acidity, platina on silica and vanadium/calcium/alumina as catalysts. On all catalysts used for the dehydrocyclization, major reactions were fragmentation of MB and 1-(p-tolyl)-2-methylbutenes (MBes), dehydrogenation of MB, double bond transfer, hydrogenation and 1,6-cyclization of MBes. Minor reactions were 1,5-cyclization of MBes and methyl group fragmentation of 1,6- cyclization products. Esterification reactions of NPG were performed using three different carboxylic acids: propionic, isobutyric and 2-ethylhexanoic acid. Commercial heterogeneous gellular (Dowex 50WX2), macroreticular (Amberlyst 15) type resins and homogeneous para-toluene sulfonic acid were used as catalysts. At first NPG reacted with carboxylic acids to form corresponding monoester and water. Then monoester esterified with carboxylic acid to form corresponding diester. In disproportionation reaction two monoester molecules formed NPG and corresponding diester. All these three reactions can attain equilibrium. Concerning esterification, water was removed from the reactor in order to prevent backward reaction. Skeletal isomerization experiments of 1-pentene were performed over HZSM-22 catalyst. Isomerization reactions of three different kind were detected: double bond, cis-trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modifiering av metallytor med starkt adsorberade kirala organiska molekyler är eventuellt den mest relevanta teknik man vet i dag för att skapa kirala ytor. Den kan utnyttjas i katalytisk produktion av enantiomeriskt rena kirala föreningar som behövs t.ex. som läkemedel och aromkemikalier. Trots många fördelar av asymmetrisk heterogen katalys jämfört med andra sätt för att få kirala föreningar, har den ändå inte blivit ett allmänt verktyg för storskaliga tillämpningar. Detta beror t.ex. på brist på djupare kunskaper i katalytiska reaktionsmekanismer och ursprunget för asymmetrisk induktion. I denna studie användes molekylmodelleringstekniker för att studera asymmetriska, heterogena katalytiska system, speciellt hydrering av prokirala karbonylföreningar till motsvarande kirala alkoholer på cinchona-alkaloidmodifierade Pt-katalysatorer. 1-Fenyl-1,2-propandion (PPD) och några andra föreningar, som innehåller en prokiral C=O-grupp, användes som reaktanter. Konformationer av reaktanter och cinchona-alkaloider (som kallas modifierare) samt vätebundna 1:1-komplex mellan dem studerades i gas- och lösningsfas med metoder som baserar sig på vågfunktionsteori och täthetsfunktionalteori (DFT). För beräkningen av protonaffiniteter användes också högst noggranna kombinationsmetoder såsom G2(MP2). Den relativa populationen av modifierarnas konformationer varierade som funktion av modifieraren, dess protonering och lösningsmedlet. Flera reaktant–modifierareinteraktionsgeometrier beaktades. Slutsatserna på riktning av stereoselektivitet baserade sig på den relativa termodynamiska stabiliteten av de diastereomeriska reaktant–modifierare-komplexen samt energierna hos π- och π*-orbitalerna i den reaktiva karbonylgruppen. Adsorption och reaktioner på Pt(111)-ytan betraktades med DFT. Regioselektivitet i hydreringen av PPD och 2,3-hexandion kunde förklaras med molekyl–yta-interaktioner. Storleken och formen av klustret använt för att beskriva Pt-ytan inverkade inte bara på adsorptionsenergierna utan också på de relativa stabiliteterna av olika adsorptionsstrukturer av en molekyl. Populationerna av modifierarnas konformationer i gas- och lösningsfas korrelerade inte med populationerna på Pt-ytan eller med enantioselektiviteten i hydreringen av PPD på Pt–cinchona-katalysatorer. Vissa modifierares konformationer och reaktant–modifierare-interaktionsgeometrier var stabila bara på metallytan. Teoretiskt beräknade potentialenergiprofiler för hydrering av kirala α-hydroxiketoner på Pt implicerade preferens för parvis additionsmekanism för väte och selektiviteter i harmoni med experimenten. De uppnådda resultaten ökar uppfattningen om kirala heterogena katalytiska system och kunde därför utnyttjas i utvecklingen av nya, mera aktiva och selektiva kirala katalysatorer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cassava starch industries generate a large volume of wastewater effluent that, stabilized in ponds, wastes its biogas energy and pollutes the atmosphere. To contribute with the reversion of this reality, this manipueira treatment research was developed in one phase anaerobic horizontal pilot reactor with support medium in bamboo pieces. The reactor was excavated into the ground and sealed with geomembrane in HDPE, having a volume equal to 33.6 m³ and continuous feeding by gravity. The stability indicators were pH, volatile acidity/total alkalinity ratio and biogas production. The statistical analyses were performed by a completely randomized design, with answers submitted to multivariate analysis. The organical loads in COD were 0.556; 0.670; 0.678 and 0.770 g L-1 and in volatile solids (VS) of 0.659; 0.608; 0.570 and 0.761 g L-1 for the hydraulic retention times (HRT) of 13.0; 11.5; 10.0 and 7.0 days, respectively. The reductions in COD were 88; 80; 88 and 67% and for VS of 76; 77; 65 and 61%. The biogas productions relatively to the consumed COD were 0.368; 0.795; 0.891 and 0.907 Lg-1, for the consumed VS of 0.524; 0.930; 1.757 and 0.952 Lg-1 and volumetric of 0.131; 0.330; 0.430 and 0.374 L L-1 d-1. The reactor remained stable and the bamboo pieces, in visual examination at the end of the experiment, showed to be in good physical conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of our society is impossible without a constant progress in life-important areas such as chemical engineering and technology. Innovation, creativity and technology are three main components driving the progress of chemistry further towards a sustainable society. Biomass, being an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even transportation fuels, captures progressively new positions in the area of chemical technology. Knowledge of heterogeneous catalysis and chemical technology applied to transformation of biomass-derived substances will open doors for a sustainable economy and facilitates the discovery of novel environmentally-benign processes which probably will replace existing technologies in the era of biorefinary. Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixedbed reactor. An advanced analytical approach was developed in order to identify reaction products and reaction intermediates in the APR of polyols. The influence of the substrate structure on the product formation and selectivity in the APR reaction was also investigated, showing that the yields of the desired products varied depending on the substrate chain length. Additionally, the influence of bioethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced explaining the formation of products and key intermediates. The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and catalytic data was established. The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to monometallic Pt. On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was performed. The developed model was proven to successfully describe experimental data on APR of sorbitol with good accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bio-ethanol has been used as a fuel additive in modern society aimed at reducing CO2-emissions and dependence on oil. However, ethanol is unsuitable as fuel supplement in higher proportions due to its physico-chemical properties. One option to counteract the negative effects is to upgrade ethanol in a continuous fixed bed reactor to more valuable C4 products such as 1-butanol providing chemical similarity with traditional gasoline components. Bio-ethanol based valorization products also have other end-uses than just fuel additives. E.g. 1-butanol and ethyl acetate are well characterised industrial solvents and platform chemicals providing greener alternatives. The modern approach is to apply heterogeneous catalysts in the investigated reactions. The research was concentrated on aluminium oxide (Al2O3) and zeolites that were used as catalysts and catalyst supports. The metals supported (Cu, Ni, Co) gave very different product profiles and, thus, a profound view of different catalyst preparation methods and characterisation techniques was necessary. Additionally, acidity and basicity of the catalyst surface have an important role in determining the product profile. It was observed that ordinary determination of acid strength was not enough to explain all the phenomena e.g. the reaction mechanism. One of the main findings of the thesis is based on the catalytically active site which originates from crystallite structure. As a consequence, the overall evaluation of different by-products and intermediates was carried out by combining the information. Further kinetic analysis was carried out on metal (Cu, Ni, Co) supported self-prepared alumina catalysts. The thesis gives information for further catalyst developments aimed to scale-up towards industrially feasible operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iridium complexes with bidentate P,N ligands represent a class of catalysts that significantly expand the application range of asymmetric hydrogenation. New substrate classes, for which there have previously been no suitable catalysts, can now be efficiently hydrogenated in high conversion and enantioselectivity. These substrates are often of synthetic importance, thus iridium catalysis represents a significant advance in the field of asymmetric catalysis. Planar chiral ferrocenyl aminophosphine ligands in which both heteroatoms were directly bound to the cyclopentadienyl ring were prepared by BF3-activated lithiationsubstitution in the presence of a chiral diamine in 49-59% yield and 75-85% enantiomeric excess. Some of these ligands were recrystallized to enantiomeric purity via ammonium fluoroborate salt formation of the phosphine sulfide. A crystal structure of one of these compounds was obtained and features an intramolecular hydrogen bond between the nitrogen, hydrogen, and sulfur atoms. Neutralization, followed by desulfurization, provided the free ligands in enantiomeric purity. Iridium complexes with these ligands were formed via reaction with [Ir(COD)Clh followed by anion exchange with NaBArF. These complexes were successfully applied in homogeneous hydrogenation of several prochiral substrates, providing products in up to 92% enantiomeric excess. Variation of the dimethyl amino group to a pyrrolidine group had a negative effect on the selectivity of hydrogenation. Variation of the substituents on phosphorus to bulkier ortho-tolyl groups had a positive effect, while variation to the more electron rich dicyclohexyl phosphine had a negative effect on selectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titania is a versatile metal oxide with multiple applications. Titania supported catalysts are reported to be much more active compared to conventional silica or alumina supported ones in some reactions. TiO2 (anatase) having high surface area, with better crystallinity and high onset temperature of rutilation can be prepared by thermal hydrolysis of titanyl sulfate solution under controlled conditions. Calcinations at 350oC for 6 hrs were necessary to crystallize anatase. Method of preparation and percentage of the loaded metal oxides have greater influence on surface area. Drastic decrease in surface area was observed upon rutilation. Rutilation started at different temperatures depending on the metal oxide and the method of preparation. TiO2 should be characterized with high surface area, phase purity and high onset temperature of rutilation.Which should be well above the optimum temperature of a designated reaction in which it is employed as a catalyst. Variation in physical properties, depending upon the method of preparation is greater in TiO2 supported catalysts. Methanation activity was found to be highly dependent on nickel concentration present on the surface of the pellets. The methanation activity is strongly influenced by support material. The rate and turn over frequency of methanation and toluene oxidation activity of these catalysts are also equally important from an industrial point of view.