868 resultados para polymer film


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin polymer films were grown in radio frequency discharges containing C2H2. Actinometry revealed the trend in the plasma concentration of the CH species as a function of the operating pressure. The C-H bond density in the films, revealed by infrared analysis, was found to increase with the pressure of C2H2 in a similar way to that of the concentration of the CH species in the discharge. From transmission ultraviolet-visible spectroscopy data, optical parameters of the polymers, namely, the refractive index and the optical gap, were calculated. For the range of pressure studied, the refractive index decreased from 1.73 to 1.63 and the optical gap increased from 2.4 to 3.3 eV. Finally, measurements of the residual stress of the polymer films were carried out by the bending beam method, using a He-Ne laser, yielding values from 0.05 to 0.3 GPa. (C) 1995 American Vacuum Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the use of dynamic scale theory and fractal analyses in the Study of distinct growth stages of layer-by-layer (LBL) films of poly(allylamine hydrochloride) (PAH) and a side-chain-substituted azobenzene copolymer (Ma-co-DR13). The LBL films were adsorbed oil glass substrates and characterized with atomic force microscopy with the Ma-co-DR13 at the top layer. The ganular morphology exhibited by the films allowed the observation of the growth process inside and outside the grains. The growth outside the grains was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of ca. 2.6. One could expect that inside the grains the morphology would be close to a Euclidian surface with fractal dimension of ca. 2 for any growth stage. The latter, however, was observed only for thicker films containing more than 10 bilayers. For thinner films the morphology was well described by a self-affine fractal. Such dependence of the growth behavior with the film thickness is associated with a more complete coverage of adsorption sites in thicker films due to diffusion of polymer molecules. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer films synthesized from plasmas of a tetramethylsilane - Ar mixture were modified by irradiation with 170 keV He ions at fluences ranging from 1 x 10(14) to 1 x 10(16) cm(-2). As revealed by infrared spectroscopy, the ion beam produced intense bond rearrangements, such as the depletion of bonding groups (C-H and Si-H), and induced the formation of new ones, such as O-H and Si-O. From the nanoindentation measurements, a remarkable increase in the surface hardness of the films was observed as the ion fluence was increased. The increases in hardness were accompanied by an increase in the film compaction as shown by using a combination of RBS and film thickness measurements. From both hardness and infrared measurements A was concluded that, under the He ion bombardment, the polymer structure is transformed into a silicon oxycarbide network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Films were grown in hexamethyldisiloxane (HMDS)-argon mixtures in a diode sputtering system with a gold cathode. Quantitative optical emission spectroscopy (OES)-actinometry revealed that the electron density or mean electron energy (or both) increased with increasing Ar concentrations in the gas feed. Increasing concentrations of Ar produced greater sputtering of the cathode and hence greater plasma A u concentrations. Fragmentation of the HMDS molecule resulted in species such as CH, Fl, and Si which were detected by OES. Film deposition rate, as determined by optical interferometry, was found to be increased by the inclusion of Ar in the gas feed. Transmission electron microscopy revealed particles, probably of Au, embedded in the polymer films. Actinometric measurements of Au in the discharge and electron probe microscopy of the deposited material showed that film Au concentrations increase with increasing concentrations of Au in the plasma. A relatively low fragmentation of HMDS molecules in the de plasma was revealed by the very small Si-HIR absorption band which is usually prominent in spectra of plasma polymerized HMDS films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixtures of C6H6 and SF6 were polymerized in an r.f. discharge. Actinometry (quantitative optical emission spectroscopy) was used to determine trends in the plasma concentrations of the species F, H and CH as a function of the proportion of SF6 in the feed. Infrared spectroscopy and electron spectroscopy for chemical analysis were employed to characterize the deposited material. Increasing proportions of SF, in the feed produced increased fragmentation of the benzene molecules and greater fluorination of the deposited material. The deposition rate, as determined by optical interferometry, was found to be enhanced about 4 times by the presence of 10-20% SF6 in the feed. At 50% SF6 in the feed, deposition rates were greater than in pure C6H6 plasmas despite the (probably large) etching effect of atomic fluorine from the discharge. Relationships between the plasma composition, electron density and temperature, film composition and growth rate are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the influence of the ion bombardment on the electrical, optical and mechanical properties of polymer films deposited from radio-frequency plasmas of benzene. Irradiations were conducted using N+ at 5 x 10(19) ions/m(2), varying the ion energy, E-0, from 0 to 150 keV. Film elemental composition was determined by Rutherford backscattering spectroscopy. Electrical resistivity and hardness were obtained by the two-point probe and nanoindentation technique, respectively. Ultraviolet-visible spectroscopy was employed to investigate the optical constants of the samples. Etching rate was determined by exposure of the films to reactive oxygen plasmas. Ion bombardment induced gradual loss of H and increase in C and O concentrations with Eo. As a consequence the electrical, optical and mechanical properties were drastically affected. Interpretation of these results is proposed in terms of chain cross-linking and unsaturation. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixtures of C6H6 and SF6 were polymerized in an r.f. discharge. Actinometry (quantitative optical emission spectroscopy) was used to determine trends in the plasma concentrations of the species F, H and CH as a function of the proportion of SF6 in the feed. Infrared spectroscopy and electron spectroscopy for chemical analysis were employed to characterize the deposited material. Increasing proportions of SF6 in the feed produced increased fragmentation of the benzene molecules and greater fluorination of the deposited material. The deposition rate, as determined by optical interferometry, was found to be enhanced about 4 times by the presence of 10-20% SF6 in the feed. At 50% SF6 in the feed, deposition rates were greater than in pure C6H6 plasmas despite the (probably large) etching effect of atomic fluorine from the discharge. Relationships between the plasma composition, electron density and temperature, film composition and growth rate are discussed. © 1992.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films were deposited from hexamethyldisiloxane (HMDSO) in a glow discharge supplied with radiofrequency (rf) power. Actino-metric optical emission spectroscopy was used to follow trends in the plasma concentrations of the species SiH (414.2 nm), CH (431.4 nm), CO (520.0 nm), and H (656.3 nm) as a function of the applied rf power (range 5 to 35 W). Transmission infrared spectroscopy (IRS) was employed to characterize the molecular structure of the polymer, showing the presence of Si-H, Si-O-Si, Si-O-C and C-H groups. The deposition rate, determined by optical interferometry, ranged from 60 to 130 nm/min. Optical properties were determined from transmission ultra violet-visible spectroscopy (UVS) data. The absorption coefficient α, the refractive index n, and the optical gap E04 of the polymer films were calculated as a function of the applied power. The refractive index at a photon energy of 1 eV varied from 1.45 to 1.55, depending on the rf power used for the deposition. The absorption coefficient showed an absorption edge similar to other non-crystalline materials, amorphous hydrogenated carbon, and semiconductors. For our samples, we define as an optical gap, the photon energy E04 corresponding to the energy at an absorption of 104 cm-1. The values of E04 decreased from 5.3 to 4.6 as the rf power was increased from 5 to 35 W. © 1995.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyfluorenes are promising materials for the emitting layer of polymer light emitting devices (PLEDs) with blue emission. In this work, we report on PLEDs fabricated with Langmuir-Blodgett (LB) films of a polyfluorene derivative, namely poly(9,9-di-hexylfluorenediyl vinylene-alt-1,4-phenylenevinylene) (PDHF-PV). Y-type LB films were transferred onto ITO substrates at a surface pressure of 35 mN m-1 and with dipping speed of 3 mm min -1. A thin aluminum layer was evaporated on top of the LB film, thus yielding a sandwich structure (ITO/PDHF-PV(LB)/Al). Current-voltage (I vs V) measurements indicate that the device displays a classical behavior of a rectifying diode. The threshold value is approximately 5 V, and the onset for visible light emission occurs at ca. 10 V. From the a.c. electrical responses we infer that the active layer has a typical behavior of PLEDs where the real component of ac conductivity obeys a power-law with the frequency. Cole-Cole plots (Im(Z) vs. Re(Z)) for the device exhibit a series of semicircles, the diameter of which decreases with increasing forward bias. This PLED structure is modeled by a parallel resistance and capacitance combination, representing the dominant mechanisms of charge transport and polarization in the organic layer, in series with a resistance representing the ITO contact. Overall, the results presented here demonstrate the feasibility of LEDs made with LB films of PDHF-PV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends made up of castor oil-based polyurethane (PU) and poly(o-methoxyaniline) (POMA) were obtained in the form of films by casting and characterized by FTIR, UV-Vis-NIR spectroscopy, and electrical conductivity measurements. Doping was carried out by immersing the films in 1.0M HCl aqueous solution. Chemical bonds between NCO group of PU and NH group of POMA were observed by means of FTIR spectra. The UV-Vis-NIR spectra indicated that the presence of the PU in the blend does not affect doping and formation of the POMA phase. The electrical conductivity research was in the range of 10-3 S/cm. © 2007 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes a fabrication and test sequence of microvalves installed on micronozzles. The technique used to fabricate the micronozzles was powder blasting. The microvalves are actuators made from PVDF (polivinylidene fluoride), that is a piezoelectric polymer. The micronozzles have convergent-divergent shape with external diameter of 1mm and throat around 230μm. The polymer have low piezoelectric coefficient, for this reason a bimorph structure with dimensions of 2mm width and 4mm of length was build (two piezoelectric sheets were glued together with opposite polarization). Both sheets are recovered with a conductor thin film used as electrodes. Applying a voltage between the electrodes one sheet expands while the other contracts and this generate a vertical movement to the entire actuator. Appling +300V DC between the electrodes the volume flux rate, for a pressure ratio of 0.5, was 0.36 sccm. Applying -200V DC between the electrodes (that means it closed) the volume flux rate was 0.32 sccm, defining a possible range of flow between 0.32 and 0.36 sccm. The third measurement was performed using AC voltage (200V AC with frequency of 1Hz), where the actuator was oscillating. For pressure ratio of 0.5, the flow rate was 0.62 sccm. © 2008 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous technological advances require materials with properties that conventional material cannot display. Material property combinations are being the focus to the development of composite materials, which are considered a multiphase material that exhibits properties of the constituent phases. One interesting material to be studied as sensing material is the composite made of ferroelectric ceramic and polymeric matrix as a two-phases composite material. In that case, the combinations properties intended are the high piezo and pyroelectric activities of the dense ceramic with the impact resistance, flexibility, formability and low densities of the polymer. Using the piezoelectric property of the composite film, it can be used to detect acoustic emission (AE), which is a transient elastic wave generated by sudden deformation in materials under stress. AE can be applied for evaluating the health of structures in a nondestructive way and without any lapse of time. The preliminary result indicates that the composite Pz34/PEEK can be used as sensing material for nondestructive evaluation. ©2009 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, a biosensor was built with smart material based on polymer brushes. The biosensor demonstrated a pH-sensitive on-off property, and it was further used to control or modulate the electrochemical responses of the biosensor. This property could be used to realize pH-controlled electrochemical reaction of hydrogen peroxide and HRP immobilized on polymer brushes. The composite film also showed excellent amperometric i-t response toward hydrogen peroxide in the concentration range of 0-13 μM. In future, this platform might be used for self-regulating targeted diagnostic, drug delivery and biofuel cell based on controllable bioelectrocatalysis. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma polymer films are very attractive for industrial applications in several sectors such as in the electronic, mechanic, biomedic, coating and others, due to its good adhesion, being insoluble in mild acids and bases and having a high crosslinking structure. This work reports the physical, structural, and surface properties of the polymer obtained from an acetylene plasma polymerization technique and treated by dielectric barrier discharge (DBD). The film was deposited in a reactor supplied by a radio-frequency power source at low pressure. After deposition, the nanofilms were treated in a DBD plasma reactor operating in air. The treatment times varied from 1 to 5 min. The analysis of molecular structure of the samples was investigated by FTIR spectroscopy, showing absorption bands in 3480, 2930, 1720, 1450 and 1380 cm(-1). The water contact-angle was investigated by goniometric technique and presented values from 5 to 65 degrees. The aging effect of these films was also studied. The alteration in the films surface morphology was assessed by an atomic force microscopy (AFM) which indicated that the roughness increased from 60 nm to 160 nm as a result of the DBD treatment. The refractive index of the samples presented values near 1.7, measured by UV-Visible spectroscopy. (C) 2014 Elsevier Ltd. All rights reserved.