974 resultados para photo catalytic degradation
Resumo:
Black-and-white snub-nosed monkeys (Rhinopithecus bieti) are endemic to the Trans-Himalayas in Northwest Yunnan and Southeast Tibet between the upper Yangtze and Mekong Rivers. Based on field surveys and previous reports, we identified the dark-coniferous forest, the mixed coniferous and broadleaf forest, and oak patches as suitable habitats (SH) for the monkeys. Summer grazing lands (SGL), which were made by local people cutting and burning the dark-coniferous forest at the high altitude belt, replaced SH. To have a general view of the status of the SH in Yunnan, we estimated the areas of SH and SGL from satellite images in 1997, and compared with areas estimated from aerial photo-based maps (ca. 1958). The work resulted in: 1) the area of SH was 4,169 km(2) in 1997; 2) SGL was 1,923 km(2); 3) during the past 40 years, the area of SH decreased by 31% (1,887 km(2)), and SGL increased by 204% (1,291 km(2)); and 4) the mean size of forest patches decreased from 15.6 to 5.4 km(2). In addition, the area of SGL is positively correlated to local human population (R-2 greater than or equal to0.53), implying that the reduction and fragmentation of habitat for Rhinopithecus bieti is a result of population growth of humans, who mostly employ traditional modes of production. Only 11 monkey groups remained in the changing habitat. Considering that forests at lower elevation were also encroached upon by farmlands in a similar way, the forest ecosystem is highly threatened. The destruction will continue unless there is a change in the mode of production in the region.
Resumo:
In this presentation, we report excellent electrical and optical characteristics of a dual gate photo thin film transistor (TFT) with bi-layer oxide channel, which was designed to provide virgin threshold voltage (V T) control, improve the negative bias illumination temperature stress (NBITS) reliability, and offer high photoconductive gain. In order to address the photo-sensitivity of phototransistor for the incoming light, top transparent InZnO (IZO) gate was employed, which enables the independent gate control of dual gate photo-TFT without having any degradation of its photosensitivity. Considering optimum initial V T and NBITS reliability for the device operation, the top gate bias was judiciously chosen. In addition, the speed and noise performance of the photo-TFT is competitive with silicon photo-transistors, and more importantly, its superiority lies in optical transparency. © 2011 IEEE.
Resumo:
A mille-feuille structured amorphous selenium (a-Se)-arsenic selenide (As2Se3) multi-layered thin film and a mixed amorphous Se-As2Se3 film is compared from a durability perspective and photo-electric perspective. The former is durable to incident laser induced degradation after numerous laser scans and does not crystallise till 105 of annealing, both of which are improved properties from the mixed evaporated film. In terms of photo-electric properties, the ratio between the photocurrent and the dark current improved whereas the increase of the dark current was higher than that of As2Se3 due to the unique current path developed within the mille-feuille structure. Implementing this structure into various amorphous semiconductors may open up a new possibility towards structure-sensitive amorphous photoconductors. © 2013 Elsevier B.V.
Resumo:
The annealing of Mg-doped GaN with Pt and Mo layers has been found to effectively improve the hole concentration of such material by more than 2 times as high as those in the same material without metal. Compared with the Ni and Mo catalysts, Pt showed good activation effect for hydrogen desorption and ohmic contact to the Ni/Au electrode. Despite the weak hydrogen desorption, Mo did not diffuse into the GaNepilayer in the annealing process, thus suppressing the carrier compensation phenomenon with respect to Ni and Pt depositions, which resulted in the high activation of Mg acceptors. For the GaN activated with the Ni, Pt, and Mo layers, the blue emission became dominant, followed by a clear peak redshift and the degradation of photoluminescence signal when compared with that of GaN without metal.
Resumo:
The effects of both organically modified montmorillonite (OMMT) and Ni2O3 on the carbonization of polypropylene (PP) during pyrolysis were investigated. The results from TEM and Raman spectroscopy showed that the carbonized products of PP were mainly multiwalled carbon nanotubes (MWNTs). Surprisingly, a combination of OMMT and Ni2O3 led to high-yield formation of MWNTs. X-ray powder diffraction (XRD) and GC-MS were used to investigate the mechanism of this combination for the high-yield formation of MWNTs from PP. Bronsted acid sites were created in degraded OMMT layers by thermal decomposition of the modifiers. The resultant carbenium ions play an important role in the carbonization of PP and the formation of MWNTs. The degradation of PP was induced by the presence of carbenium ions to form predominantly products with lower carbon numbers that could be easily catalyzed by the nickel catalyst for the growth of MWNTs. Furthermore, carbenium ions are active intermediates that promote the growth of MWNTs from the degradation products with higher carbon numbers through hydride-transfer reactions. The XRD measurements showed that Ni2O3 was reduced into metallic nickel (Ni) in situ to afford the active sites for the growth of MWNTs.
Resumo:
Three kinds of organically modified Na+-montmorillonites (OMMTs), including two kinds of octadecylammonium modified montmorillonite with different contents of octadecylammonium and a kind of sodium dodecylsulfonate (SDSo) modified montmorillonite, were used to prepare polyamide 12 (PA12)/OMMT nanocomposites. Effects of the modifiers on degradation and fire retardancy of PA12/OMMT nanocomposites were investigated. Acid sites formed in cationic surfactant modified MMT via Hoffman decomposition could accelerate degradation of PA12 at high temperature. However, catalytic effect of the acid sites on carbonization of the degradation products promoted char barrier formation, which reduced heat release rate (HRR). Higher content of cationic surfactant in OMMT is beneficial to fire retardancy of PA12 nanocomposites and the dispersion states of OMMT have assistant effects. In contrast, Na+-montmorillonite (Na-MMT) and anionic surfactant modified MMT (a-MMT) could not form acid sites on the MMT layers; in this case, fire retardancy of PA12/Na-MMT appears to have no improvement and PA12/a-MMT appears to have limited improvement.
Resumo:
Novel biodegradable hydrogels by photo-cross-linking macromers based on polyphosphoesters and poly(ethylene glycol) (PEG) are reported. Photo-cross-linkable macromers were synthesized by ring-opening polymerization of the cyclic phosphoester monomer 2-(2-oxo-1,3,2-dioxaphospholoyloxy) ethyl methacrylate (OPEMA) using PEG as the initiator and stannous octoate as the catalyst. The macrorners were characterized by H-1 NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography measurements. The content of polyphosphoester in the macromer was controlled by varying the feed ratio of OPEMA to PEG. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.05% (w/w) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors were evaluated. The results demonstrated that cross-linking density and pH values strongly affected the degradation rates. The macromers was compatible to osteoblast cells, not exhibiting significant cytotoxicity up to 0.5 mg/mL. "Live/dead" cell staining assay also demonstrated that a large majority of the osteoblast cells remained viable after encapsulation into the hydrogel constructs, showing their potential as tissue engineering scaffolds.
Resumo:
We report a simple method to directly pattern polymer-based photo luminescent material, i.e. a prepatterned mask is placed a close distance above it. The final structure is a positive replica of the lateral structures in the mask with submicrometer resolution. The comparison of luminescence efficiency before and after patterning indicates almost no degradation in optical property of the material during the experiments. The mechanism of pattern formation is also discussed.
Resumo:
Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.
Resumo:
The urgent need for alternative renewable energies to supplement petroleum-based fuels and the reduction of landfill sites for disposal of solid wastes makes it increasingly attractive to produce inexpensive biofuels from the organic fraction of the municipal solid waste. Therefore, municipal waste in the form of newspaper was investigated as a potential feedstock for fermentable sugars production. Hydrolysis of newspaper by dilute phosphoric acid was carried out in autoclave Parr reactor, where reactor temperature and acid concentration were examined. Xylose concentration reached a maximum value of 14 g/100 g dry mass corresponding to a yield of 94% at the best identified conditions of 2.5 wt% HPO, 135°C, 120 min reaction time, and at 2.5 wt% HPO, 150°C, and 60 min reaction time. For glucose, an average yield of 26% was obtained at 2.5 wt% HPO, 200°C, and 30 min. Furfural and 5-hydroxymethylfurfural (HMF) formation was clearly affected by reaction temperature, where the higher the temperature the higher the formation rate. The maximum furfural formed was an average of 3 g/100 g dry mass, corresponding to a yield of 28%. The kinetic study of the acid hydrolysis was also carried out using the Saeman and the two-fraction models. It was found for both models that the kinetic constants (K) depend on the acid concentration and temperature. The degradation of HMF to levulinic acid is faster than the degradation of furfural to formic acid. Also, the degradation rate is higher than the formation rate for both inhibitors when degradation is observed.
Resumo:
N,O-ligated Pd(II) complexes show considerable promise for the oxidation of challenging secondary aliphatic alcohols. The crystal structures of the highly active complexes containing the 8-hydroxyquinoline-2-carboxylic acid (HCA) and 8-hydroxyquinoline-2-sulfonic acid (HSA) ligands have been obtained. The (HSA)Pd(OAc)2 system can effectively oxidise a range of secondary alcohols, including unactivated alcohols, within 4–6 h using loadings of 0.5 mol%, while lower loadings (0.2 mol%) can be employed with extended reaction times. The influence of reaction conditions on catalyst degradation was also examined in these studies.
Resumo:
Tese de doutoramento, Química (Química Tecnológica), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
Tese de mestrado em Biologia Humana e Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015
Resumo:
In the present work Titania bulk powders and coatings were prepared by subjecting titanium isopropoxide solution to a controlled hydrolysis-condensation process. The powders were characterized using techniques such as FTIR for their chemical interactions, TG-DTA for the thermal decomposition features, XRD for the phase assemblage, BET specific surface area analysis for the textural features. The study discusses the preparation methods and the characterization techniques employed and a detailed discussion on the physico-chemical characterization of the prepared systems. The influence of dopants and leaching on the physico-chemical properties as well as their influence on photo activity is also included. The structural/functional coatings of different Titania compositions includes in this study. Coatings on pre-treated glass surfaces with the best compositions prepared showed 90 % transmittance in the visible region.