916 resultados para parallel processing
Resumo:
Thesis--University of Illinois at Urbana-Champaign.
Resumo:
"Results from a search of the technical report database over a 10-year period ... references cover only unclassified, unlimited document references with abstracts."
Resumo:
"This report reproduces a thesis of the same title submitted to the Department of Electrical Engineering, Massachusetts Institute of Technology, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, May 1970."--p. 2
Resumo:
Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes
Resumo:
In Fourier domain optical coherence tomography (FD-OCT), a large amount of interference data needs to be resampled from the wavelength domain to the wavenumber domain prior to Fourier transformation. We present an approach to optimize this data processing, using a graphics processing unit (GPU) and parallel processing algorithms. We demonstrate an increased processing and rendering rate over that previously reported by using GPU paged memory to render data in the GPU rather than copying back to the CPU. This avoids unnecessary and slow data transfer, enabling a processing and display rate of well over 524,000 A-scan/s for a single frame. To the best of our knowledge this is the fastest processing demonstrated to date and the first time that FD-OCT processing and rendering has been demonstrated entirely on a GPU.
Resumo:
This study provides evidence for a Stroop-like interference effect in word recognition. Based on phonologic and semantic properties of simple words, participants who performed a same/different word-recognition task exhibited a significant response latency increase when word pairs (e.g., POLL, ROD) featured a comparison word (POLL) that was a homonym of a synonym (pole) of the target word (ROD). These results support a parallel-processing framework of lexical decision making, in which activation of the pathways to word recognition may occur at different levels automatically and in parallel. A subset of simple words that are also brand names was examined and exhibited this same interference. Implications for word recognition theory and practical implications for strategic marketing are discussed.
Resumo:
A parallel method for dynamic partitioning of unstructured meshes is described. The method employs a new iterative optimisation technique which both balances the workload and attempts to minimise the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more quickly. Perhaps more importantly, the algorithm results in only a small fraction of the amount of data migration compared to the static partitioners.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
Debugging control software for Micro Aerial Vehicles (MAV) can be risky out of the simulator, especially with professional drones that might harm people around or result in a high bill after a crash. We have designed a framework that enables a software application to communicate with multiple MAVs from a single unified interface. In this way, visual controllers can be first tested on a low-cost harmless MAV and, after safety is guaranteed, they can be moved to the production MAV at no additional cost. The framework is based on a distributed architecture over a network. This allows multiple configurations, like drone swarms or parallel processing of drones' video streams. Live tests have been performed and the results show comparatively low additional communication delays, while adding new functionalities and flexibility. This implementation is open-source and can be downloaded from github.com/uavster/mavwork
Resumo:
The use of graphical processing unit (GPU) parallel processing is becoming a part of mainstream statistical practice. The reliance of Bayesian statistics on Markov Chain Monte Carlo (MCMC) methods makes the applicability of parallel processing not immediately obvious. It is illustrated that there are substantial gains in improved computational time for MCMC and other methods of evaluation by computing the likelihood using GPU parallel processing. Examples use data from the Global Terrorism Database to model terrorist activity in Colombia from 2000 through 2010 and a likelihood based on the explicit convolution of two negative-binomial processes. Results show decreases in computational time by a factor of over 200. Factors influencing these improvements and guidelines for programming parallel implementations of the likelihood are discussed.
Resumo:
We describe a sequence of experiments investigating the strengths and limitations of Fukushima's neocognitron as a handwritten digit classifier. Using the results of these experiments as a foundation, we propose and evaluate improvements to Fukushima's original network in an effort to obtain higher recognition performance. The neocognitron's performance is shown to be strongly dependent on the choice of selectivity parameters and we present two methods to adjust these variables. Performance of the network under the more effective of the two new selectivity adjustment techniques suggests that the network fails to exploit the features that distinguish different classes of input data. To avoid this shortcoming, the network's final layer cells were replaced by a nonlinear classifier (a multilayer perceptron) to create a hybrid architecture. Tests of Fukushima's original system and the novel systems proposed in this paper suggest that it may be difficult for the neocognitron to achieve the performance of existing digit classifiers due to its reliance upon the supervisor's choice of selectivity parameters and training data. These findings pertain to Fukushima's implementation of the system and should not be seen as diminishing the practical significance of the concept of hierarchical feature extraction embodied in the neocognitron. © 1997 IEEE.
Resumo:
Energy efficient embedded computing enables new application scenarios in mobile devices like software-defined radio and video processing. The hierarchical multiprocessor considered in this work may contain dozens or hundreds of resource efficient VLIW CPUs. Programming this number of CPU cores is a complex task requiring compiler support. The stream programming paradigm provides beneficial properties that help to support automatic partitioning. This work describes a compiler for streaming applications targeting the self-build hierarchical CoreVA-MPSoC multiprocessor platform. The compiler is supported by a programming model that is tailored to fit the streaming programming paradigm. We present a novel simulated-annealing (SA) based partitioning algorithm, called Smart SA. The overall speedup of Smart SA is 12.84 for an MPSoC with 16 CPU cores compared to a single CPU implementation. Comparison with a state of the art partitioning algorithm shows an average performance improvement of 34.07%.
Resumo:
In visual search one tries to find the currently relevant item among other, irrelevant items. In the present study, visual search performance for complex objects (characters, faces, computer icons and words) was investigated, and the contribution of different stimulus properties, such as luminance contrast between characters and background, set size, stimulus size, colour contrast, spatial frequency, and stimulus layout were investigated. Subjects were required to search for a target object among distracter objects in two-dimensional stimulus arrays. The outcome measure was threshold search time, that is, the presentation duration of the stimulus array required by the subject to find the target with a certain probability. It reflects the time used for visual processing separated from the time used for decision making and manual reactions. The duration of stimulus presentation was controlled by an adaptive staircase method. The number and duration of eye fixations, saccade amplitude, and perceptual span, i.e., the number of items that can be processed during a single fixation, were measured. It was found that search performance was correlated with the number of fixations needed to find the target. Search time and the number of fixations increased with increasing stimulus set size. On the other hand, several complex objects could be processed during a single fixation, i.e., within the perceptual span. Search time and the number of fixations depended on object type as well as luminance contrast. The size of the perceptual span was smaller for more complex objects, and decreased with decreasing luminance contrast within object type, especially for very low contrasts. In addition, the size and shape of perceptual span explained the changes in search performance for different stimulus layouts in word search. Perceptual span was scale invariant for a 16-fold range of stimulus sizes, i.e., the number of items processed during a single fixation was independent of retinal stimulus size or viewing distance. It is suggested that saccadic visual search consists of both serial (eye movements) and parallel (processing within perceptual span) components, and that the size of the perceptual span may explain the effectiveness of saccadic search in different stimulus conditions. Further, low-level visual factors, such as the anatomical structure of the retina, peripheral stimulus visibility and resolution requirements for the identification of different object types are proposed to constrain the size of the perceptual span, and thus, limit visual search performance. Similar methods were used in a clinical study to characterise the visual search performance and eye movements of neurological patients with chronic solvent-induced encephalopathy (CSE). In addition, the data about the effects of different stimulus properties on visual search in normal subjects were presented as simple practical guidelines, so that the limits of human visual perception could be taken into account in the design of user interfaces.
Resumo:
Background: The aging population is placing increasing demands on surgical services, simultaneously with a decreasing supply of professional labor and a worsening economic situation. Under growing financial constraints, successful operating room management will be one of the key issues in the struggle for technical efficiency. This study focused on several issues affecting operating room efficiency. Materials and methods: The current formal operating room management in Finland and the use of performance metrics and information systems used to support this management were explored using a postal survey. We also studied the feasibility of a wireless patient tracking system as a tool for managing the process. The reliability of the system as well as the accuracy and precision of its automatically recorded time stamps were analyzed. The benefits of a separate anesthesia induction room in a prospective setting were compared with the traditional way of working, where anesthesia is induced in the operating room. Using computer simulation, several models of parallel processing for the operating room were compared with the traditional model with respect to cost-efficiency. Moreover, international differences in operating room times for two common procedures, laparoscopic cholecystectomy and open lung lobectomy, were investigated. Results: The managerial structure of Finnish operating units was not clearly defined. Operating room management information systems were found to be out-of-date, offering little support to online evaluation of the care process. Only about half of the information systems provided information in real time. Operating room performance was most often measured by the number of procedures in a time unit, operating room utilization, and turnover time. The wireless patient tracking system was found to be feasible for hospital use. Automatic documentation of the system facilitated patient flow management by increasing process transparency via more available and accurate data, while lessening work for staff. Any parallel work flow model was more cost-efficient than the traditional way of performing anesthesia induction in the operating room. Mean operating times for two common procedures differed by 50% among eight hospitals in different countries. Conclusions: The structure of daily operative management of an operating room warrants redefinition. Performance measures as well as information systems require updating. Parallel work flows are more cost-efficient than the traditional induction-in-room model.
Resumo:
In this paper we propose a novel technique to model and ana¿ lyze the performability of parallel and distributed architectures using GSPN-reward models.