902 resultados para nickel compounds
Resumo:
The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.
Resumo:
In the title compound, [Ni(C(18)H(13)N(2)O(2)S)(2)], the Ni(II) atom is coordinated by the S and O atoms of two N-furoyl-N ',N '-diphenylthioureate ligands in a slightly distorted squareplanar coordination geometry. The two O and two S atoms are cis to each other.
Resumo:
In the title compound, [Ni(C22H19N2OS)(2)], the Ni-II atom is coordinated by the S and O atoms of two N-benzoyl-N',N'-dibenzylthioureate ligands in a slightly distorted square-planar geometry. The two O atoms are cis, as are the two S atoms.
Resumo:
In this work, we employed the effective coordination concept to study the local environments of the Ge, Sb, and Te atoms in the Ge(m)Sb(2n)Te(m+3n) compounds. From our calculations and analysis, we found an average effective coordination number (ECN) reduction of 1.59, 1.42, and 1.37, for the Ge, Sb, Te atoms in the phase transition from crystalline, ECN=5.55 (Ge), 5.73 (Sb), 4.37 (Te), to the amorphous phase, ECN=3.96 (Ge), 4.31 (Sb), 3.09 (Te), for the Ge(2)Sb(2)Te(5) composition. Similar changes are observed for other compositions. Thus, our results indicate that the coordination changes from the crystalline to amorphous phase are not large as previously assumed in the literature, i.e., from sixfold to fourfold for Ge, which can contribute to obtain a better understanding of the crystalline to amorphous phase transition. (C) 2011 American Institute of Physics. [doi:10.1063/1.3533422]
Resumo:
An analytical procedure based on microwave-assisted digestion with diluted acid and a double cloud point extraction is proposed for nickel determination in plant materials by flame atomic absorption spectrometry. Extraction in micellar medium was successfully applied for sample clean up, aiming to remove organic species containing phosphorous that caused spectral interferences by structured background attributed to the formation of PO species in the flame. Cloud point extraction of nickel complexes formed with 1,2-thiazolylazo-2-naphthol was explored for pre-concentration, with enrichment factor estimated as 30, detection limit of 5 mu g L(-1) (99.7% confidence level) and linear response up to 80 mu g L(-1). The accuracy of the procedure was evaluated by nickel determinations in reference materials and the results agreed with the certified values at the 95% confidence level.
Resumo:
Upland rice plants, cultivar `IAC 202,` were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo - Ni, AN - Mo + Ni, UR + Mo + Ni, UR + Mo - Ni, and UR - Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry-matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 --N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR-grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 --N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate-grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.
Resumo:
A procedure for simultaneous separation/preconcentration of copper. zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-I 14). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L(-1). 0.3 mL, 0.15% (w/v), 50 degrees C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0. and 6.3 mu g L(-1), respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples. (C) 2009 Published by Elsevier B.V.
Resumo:
In this work the influence of four different ligands present in the xylem sap of Quercus ilex (histidine, citric, oxalic and aspartic acids) on Ni(II) adsorption by xylem was investigated. Grinded xylem was trapped in acrylic columns and solutions of Ni(II), in the absence and presence of the four ligands prepared in KNO(3) 0-1 mol L(-1) at pH 5.5, were percolated through the column. Aliquots of solutions were recovered in the column end for Ni determination by graphite furnace atomic absorption spectrometry (GFAAS). The experimental. data to describe Ni sorption by xylem in both the presence and absence of ligands was better explained by the Freundlich isotherm model. The decreasing affinity order of ligands for Ni was: oxalic acid > citric acid > histidine > aspartic acid. On the other hand, the Ni(II) adsorption by xylem increased following the inverse sequence of ligands. Potentiometric titrations of acidic groups were carried out to elucidate the sorption site groups available in Q. ilex xylem. The potentiometric titration has shown three sorption sites: pK(a) 2.6 (57.7% of the sorption sites), related to monobasic aliphatic carboxylic acids or nitrogen aromatic bases, pK(a) 8.1 (9.6%) and pK(a) 9.9 (32.7%), related to phenolic groups. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The electrodeposition of nickel based composites is been performed in order to improve properties of nickel layers, such as hardness, wear resistance, lubrication, corrosion resistance and catalytic activity. In the present work Nb powders (20 mu m average size) and Ni were codeposited on 1020 carbon steel by galvanostatic electrolysis of Watts bath, using 10, 20 and 40 mA/cm(2) cathodic current density and 240, 400 and 550 rpm electrolyte stirring rate. The morphology and texture of the coatings, Nb incorporated volume fraction, microhardness, adhesion to the substrate and corrosion behavior were evaluated. The Ni-Nb composite layers presented a rough morphology with randomly oriented Ni grains, whereas pure Ni coatings were smooth and showed highly preferred orientation in the [110] or [100] direction. The volume fraction of Nb in the composites determined by image analysis ranged from 8.5 to 19%. The 400 rpm stirring rate led to the highest Nb content (16 to 19016) for all current densities investigated The microhardness of the composite layers was higher than that of pure Ni coatings due to refining of Ni grains induced by incoporation of Nb particles. The adhesion of the coatings estimated qualitatively by bend test was found satisfactory. The Ni-Nb composites presented lower corrosion rate than Ni coatings in both 3% NaCl and 20% H2SO4 solutions.
Resumo:
This work work evaluates linoleic acid peroxidation reactions initiated by Fe(3+)-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe(3+) ions from freshly prepared solutions. The compounds responsible for the Fe(3+)-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe(3+) ions and the Fe(3+)-reducing compounds showed that the rate of O(2) consumption during peroxidation was proportional to the Fe(3+)-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe(3+)-reducing compounds formed during wood biodegradation by C subvermispora can mediate lignin degradation through linoleic acid peroxidation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The inhibitory action of acetic acid, ferulic acid, and syringaldehyde on metabolism of Candida guilliermondii yeast during xylose to xylitol bioconversion was evaluated. Assays were performed in buffered and nonbuffered semidefined medium containing xylose as main sugar (80.0 g/l), supplemented or not with acetic acid (0.8-2.6 g/l), ferulic acid (0.2-0.6 g/l), and/or syringaldehyde (0.3-0.8 g/l), according to a 2(3) full factorial design. Since only individual effects of the variables were observed, assays were performed in a next step in semidefined medium containing different concentrations of each toxic compound individually, for better understanding of their maximum concentration that can be present in the fermentation medium without affecting yeast metabolism. It was concluded that acetic acid, ferulic acid, and syringaldehyde are compounds that may affect Candida guilliermondii metabolism (mainly cell growth) during bioconversion of xylose to xylitol. Such results are of interest and reveal that complete removal of toxic compounds from the fermentation medium is not necessary to obtain efficient conversion of xylose to xylitol by Candida guilliermondii. Fermentation in buffered medium was also considered as an alternative to overcome the inhibition caused by these toxic compounds, mainly by acetic acid.
Resumo:
To evaluate the potential for fermentation of raspberry pulp, sixteen yeast strains (S. cerevisiae and S. bayanus) were studied. Volatile compounds were determined by GC-MS, GC-FID, and GC-PFPD. Ethanol. glycerol and organic acids were determined by HPLC. HPLC-DAD was used to analyse phenolic acids. Sensory analysis was performed by trained panellists. After a screening step, CAT-1, UFLA FW 15 and S. bayanus CBS 1505 were previously selected based on their fermentative characteristics and profile of the metabolites identified. The beverage produced with CAT-1 showed the highest volatile fatty acid concentration (1542.6 mu g/L), whereas the beverage produced with UFLA FIN 15 showed the highest concentration of acetates (2211.1 mu g/L) and total volatile compounds (5835 mu g/L). For volatile sulphur compounds. 566.5 mu g/L were found in the beverage produced with S. bayanus CBS 1505. The lowest concentration of volatile sulphur compounds (151.9 mu g/L) was found for the beverage produced with UFLA FW 15. In the sensory analysis, the beverage produced with UFLA FW 15 was characterised by the descriptors raspberry, cherry, sweet, strawberry, floral and violet. In conclusion, strain UFLA FW 15 was the yeast that produced a raspberry wine with a good chemical and sensory quality. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Different types of activated carbon were prepared by chemical activation of brewer`s spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: The hydrolysis of hemicellulosic material can provide liquor with high xylose concentration (which can be used as a fermentation medium) and phenolic compounds (Phs), potentially immunostimulating compounds. However, these hydrolysates must be detoxified in order to remove the Phs that can act as inhibitors in bioconversions. RESULTS: Aqueous two-phase systems composed of thermoseparating copolymers were used for rice straw hydrolysate detoxification. The hydrolysis process was able to promote chemical breakdown of 85% of the total hemicellulose content, 14% of the cellulose, and 2% of the lignin. The hydrolysate obtained contained 19.7 g L-1 of xylose and several phenolic compounds, such as vanillin, vanillic acid, ferullic acid, etc. The phenolics extraction was studied as a function of copolymer molar mass (1100 g mol(-1), 2000 g mol(-1) and 2800 g mol(-1)), their percentages (from 5% to 50%) and Phs initial concentration. Phenolic compounds extraction of around 80% was obtained under the following conditions: 20% (w/w) and 35% (w/w) copolymer 1100 g mol-1, 35% (w/w) copolymer 2000 g mol(-1) and 35% (w/w) copolymer 2800 g mol(-1) at 25 degrees C. CONCLUSIONS: The results demonstrated the viability of this method for the removal of Phs from rice straw hydrolysate, which has potential uses in bioconversion processes. (c) 2007 Society of Chemical Industry.