883 resultados para network-on-chip,deadlock, message-dependent-deadlock,NoC
Resumo:
We propose an asymmetric multi-processor SoC architecture, featuring a master CPU running uClinux, and multiple loosely-coupled slave CPUs running real-time threads assigned by the master CPU. Real-time SoC architectures often demand a compromise between a generic platform for different applications, and application-specific customizations to achieve performance requirements. Our proposed architecture offers a generic platform running a conventional embedded operating system providing a traditional software-oriented development approach, while multiple slave CPUs act as a dedicated independent real-time threads execution unit running in parallel of master CPU to achieve performance requirements. In this paper, the architecture is described, including the application / threading development environment. The performance of the architecture with several standard benchmark routines is also analysed.
Resumo:
Two experiments investigated the conditions under which majority and minority sources instigate systematic processing of their messages. Both experiments crossed source status (majority vs. minority) with message quality (strong vs. weak arguments). In each experiment, message elaboration was manipulated by varying either motivational (outcome relevance, Experiment 1) or cognitive (orientating tasks, Experiment 2) factors. The results showed that when either motivational or cognitive factors encouraged low message elaboration, there was heuristic acceptance of the majority position without detailed message processing. When the level of message elaboration was intermediate, there was message processing only for the minority source. Finally, when message elaboration was high, there was message processing for both source conditions. These results show that majority and minority influence is sensitive to motivational and cognitive factors that constrain or enhance message elaboration and that both sources can lead to systematic processing under specific circumstances. © 2007 by the Society for Personality and Social Psychology, Inc.
Resumo:
Immunoprecipitation (IP) is one of the most widely used and selective techniques for protein purification. Here, a miniaturised, polymer-supported immunoprecipitation (µIP) method for the on-chip purification of proteins from complex mixtures is described. A 4 µl PDMS column functionalised with covalently bound antibodies was created and all critical aspects of the µIP protocol (antibody immobilisation, blocking of potential non-specific adsorption sites, sample incubation and washing conditions) were assessed and optimised. The optimised µIP method was used to obtain purified fractions of affinity-tagged protein from a bacterial lysate.