873 resultados para multi-walled carbon nanotube
Resumo:
Ab initio simulations of carbon nanotubes interacting with ascorbic acid and nicotinamide are reported. The electronic transport properties of these systems are studied using a combination of density functional theory and non-equilibrium Green`s functions methods. The adsorptions of both molecules are observed to depend strongly on their functionalization. The interaction through the appropriate functionalized species modifies the structural and electronic properties of the original system, resulting in a chemisorption regime. Changes in the electronic transport properties are also observed, with reductions on the total electronic transmission probabilities. Nevertheless, when the molecules interact through the pristine form, a physisorption interaction is observed with insignificant structural and electronic transport changes. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The assembly of carbon nanotubes (CNTs) into nanostructured films is attractive for producing functionalized hybrid materials and (bio-)chemical sensors, but this requires experimental methods that allow for control of molecular architecturcs. In this study, we exploit the layer-by-layer (LbL) technique to obtain two types of sensors incorporating CNTs. In the first, LbL films of alternating layers of multi-walled carbon nanotubes (MWNTs) dispersed in polyarninoamide (PAMAM) dendrimers and nickel phthalocyanine (NiTsPc) were used in amperometric detection of the neurotransmitter dopamine (DA). The electrochemical properties evaluated with cyclic voltammetry indicated that the incorporation of MWNTs in the PAMAM-NT/NiTsPc LbL films led to a 3-fold increase in the peak current, in addition to a decrease of 50 mV in the oxidation potential of DA. The latter allowed detection of DA even in the presence of ascorbic acid (AA), a typical interferent for DA. Another LbL film was obtained with layers of PAMAM and single-walled carbon nanotubes (SWNTs) employed in field-effect-devices using a capacitive electrolyte-insulator-semiconductor structure (EIS). The adsorption of the film components was monitored by measuring the flat-band voltage shift in capacitance-voltage (C-P) curves, caused by the charges from the components. Constant capacitance (ConCap) measurements showed that the EISPAMAM/SWNT film displayed a high pH sensitivity (ca. 54.5 mV/pH), being capable of detecting penicillin G between 10(-4) mol L(-1) and 10(-2) mol L-1, when a layer of penicillinase was adsorbed atop the PAMAM/SWNT film. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The electrochemical behaviour of multi-walled carbon nanotubes was compared with that of glassy carbon, and the differences were investigated by cyclic voltammetry and electrochemical impedance spectroscopy before and after acid pre-treatment. The electrochemical techniques showed that acid functionalisation significantly improves the electrocatalytic properties of carbon nanotubes. These electrocatalytic properties enhance the analytical signal, shift the oxidation peak potential to a less positive value, and the charge-transfers rate increase of both dopamine and K(4)[Fe(CN)(6)]. The functionalisation step and the resulting appearance of edge planes covered with different chemical groups were confirmed by FTIR measurements. Carbon nanotubes after acid pre-treatment are a potentially powerful analytical tool for sensor development. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A copper phthalocyanine/multiwalled carbon nanotube film-modified glassy carbon electrode has been used for the determination of the herbicide glyphosate (Gly) at -50 mV vs. SCE by electrochemical oxidation using differential pulse voltamtnetry (DPV). Cyclic voltammetry and electrochemical impedance spectroscopy showed that Gly is adsorbed on the metallic centre of the copper phthalocyanine molecule, with formation of Gly-copper ion complexes. An analytical method was developed using DPV in pH 7.4 phosphate buffer solution, without any pretreatment steps: Gly was determined in the concentration range of 0.83-9.90 mu mol L(-1), with detection limit 12.2 nmol L(-1) (2.02 mu g L(-1))
Resumo:
A new composite electrode based on multiwall carbon nanotubes (MWCNT) and silicone-rubber (SR) was developed and applied to the determination of propranolol in pharmaceutical formulations. The effect of using MWCNT/graphite mixtures in different proportions was also investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were used for electrochemical characterization of different electrode compositions. Propranolol was determined using MWCNT/SR 70% (m/m) electrodes with linear dynamic ranges up to 7.0 mu molL(-1) by differential pulse and up to 5.4 mu molL(-1) by square wave voltammetry, with LODs of 0.12 and 0.078 mu molL(-1), respectively. Analysis of commercial samples agreed with that obtained by the official spectrophotometric method. The electrode is mechanically robust and presented reproducible results and a long useful life.
Resumo:
Artificial muscles are of practical interest, but few types have been commercially exploited. Typical problems include slow response, low strain and force generation, short cycle life, use of electrolytes, and low energy efficiency. We have designed guest-filled, twist-spun carbon nanotube yarns as electrolyte-free muscles that provide fast, high-force, large-stroke torsional and tensile actuation. More than a million torsional and tensile actuation cycles are demonstrated, wherein a muscle spins a rotor at an average 11,500 revolutions/minute or delivers 3% tensile contraction at 1200 cycles/minute. Electrical, chemical, or photonic excitation of hybrid yarns changes guest dimensions and generates torsional rotation and contraction of the yarn host. Demonstrations include torsional motors, contractile muscles, and sensors that capture the energy of the sensing process to mechanically actuate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Siloxane-polymethyl methacrylate hybrid films containing functionalized multiwall carbon nanotubes (CNTs) were deposited by dip-coating on carbon steel substrates from a sol prepared by radical polymerization of methyl methacrylate and 3-methacryloxy propyl-trimethoxysilane, followed by hydrolytic co-polycondensation of tetraethoxysilane. The correlation between the structural properties and corrosion protection efficiency was studied as a function of the molar ratio of nanotubes carbon to silicon, varied in the range between 0.1% and 5%. 29Si nuclear magnetic resonance and thermogravimetric measurements have shown that hybrids containing carbon nanotubes have a similar degree of polycondensation and thermal stability as the undoped matrix and exhibit and excellent adhesion to the substrate. Microscopy and X-ray photoelectron spectroscopy results revealed a very good dispersion of carbon nanotubes in the hybrid matrix and the presence of carboxylic groups allowing covalent bonding with the end-siloxane nodes. Potentiodynamic polarization curves and electrochemical impedance spectroscopy results demonstrate that CNTs containing coatings maintain the excellent corrosion protection efficiency of the hybrids, showing even a superior performance in acidic solution. The nanocomposite structure acts as efficient corrosion barrier, increasing the total impedance by 4 orders of magnitude and reducing the current densities by more than 3 orders of magnitude, compared to the bare steel electrode. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Carbon nanotubes have been at the forefront of nanotechnology, leading not only to a better understanding of the basic properties of charge transport in one dimensional materials, but also to the perspective of a variety of possible applications, including highly sensitive sensors. Practical issues, however, have led to the use of bundles of nanotubes in devices, instead of isolated single nanotubes. From a theoretical perspective, the understanding of charge transport in such bundles, and how it is affected by the adsorption of molecules, has been very limited, one of the reasons being the sheer size of the calculations. A frequent option has been the extrapolation of knowledge gained from single tubes to the properties of bundles. In the present work we show that such procedure is not correct, and that there are qualitative differences in the effects caused by molecules on the charge transport in bundles versus isolated nanotubes. Using a combination of density functional theory and recursive Green's function techniques we show that the adsorption of molecules randomly distributed onto the walls of carbon nanotube bundles leads to changes in the charge density and consequently to significant alterations in the conductance even in pristine tubes. We show that this effect is driven by confinement which is not present in isolated nanotubes. Furthermore, a low concentration of dopants randomly adsorbed along a two-hundred nm long bundle drives a change in the transport regime; from ballistic to diffusive, which can account for the high sensitivity to different molecules.
Resumo:
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavors, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of increased interesting tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process, besides, surface modifications bring a vital role in in vivo performance of biomaterials. In this work, bacterial cellulose fermentation was modified with carbon nanotubes for sensor applications and diseases diagnostic. SEM images showed that polymer modified-carbon nanotube (PVOH-carbon nanotube) produced well dispersed system and without agglomeration. Influences of carbon nanotube in bacterial cellulose were analyzed by FTIR. TGA showed higher thermal properties of developed bionanocomposites.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)