988 resultados para molecular orbital theory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We use a tight-binding formulation to investigate the transmissivity and the currentvoltage (I_V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare theresults for the genomic DNA sequence with those of arti_cial sequences (the long-range correlated Fibonacci and RudinShapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same _rst neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I_V curves seem to be mostly inuenced by the short-range correlations. We also analyze in this work the electronic and thermal properties along an _-helix sequence obtained from an _3 peptide which has the uni-dimensional sequence (Leu-Glu-Thr- Leu-Ala-Lys-Ala)3. An ab initio quantum chemical calculation procedure is used to obtain the highest occupied molecular orbital (HOMO) as well as their charge transfer integrals, when the _-helix sequence forms two di_erent variants with (the so-called 5Q variant) and without (the 7Q variant) _brous assemblies that can be observed by transmission electron microscopy. The di_erence between the two structures is that the 5Q (7Q) structure have Ala ! Gln substitution at the 5th (7th) position, respectively. We estimate theoretically the density of states as well as the electronic transmission spectra for the peptides using a tight-binding Hamiltonian model together with the Dyson's equation. Besides, we solve the time dependent Schrodinger equation to compute the spread of an initially localized wave-packet. We also compute the localization length in the _nite _-helix segment and the quantum especi_c heat. Keeping in mind that _brous protein can be associated with diseases, the important di_erences observed in the present vi electronic transport studies encourage us to suggest this method as a molecular diagnostic tool

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O desenvolvimento de linhagens resistentes de Plasmodium falciparum tem encorajado a busca por novas drogas antimalariais. A febrifugina é uma substância natural com alta atividade contra o P. falciparum que apresenta propriedade emética e toxicidade para o fígado tal que não permitem o seu uso clínico. A busca por análogos que possam ter uma performance clínica melhor é um tema de pesquisa atual. Nosso objetivo é investigar a estrutura eletrônica teórica de uma família de derivados da febrifugina empregando cálculos semi-empíricos de orbitais moleculares, procurando por índices eletrônicos que possam ajudar a modelar novos derivados mais eficientes. Os resultados teóricos mostram que para as moléculas mais seletivas existe um agrupamento dos valores de determinados índices em intervalos bem definidos. O modelo proposto para se obter alta seletividade foi testado com sucesso.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the nature of visible photoluminescence at room temperature in amorphous lead titanate in the light of the results of recent experimental and theoretical calculations. Experimental results obtained by XANES and EXAFS revealed that amorphous lead titanate is composed of a Ti-O network having fivefold Ti coordination and NBO-type (non-bridging oxygen) defects. These defects can modify the electronic structure of amorphous compounds. Our calculation of the electronic structure involved the use of first-principle molecular calculations to simulate the variation of the electronic structure in the lead titanate crystalline phase, which is known to have a direct band gap, and we also made an in-depth examination of amorphous lead titanate. The results of our theoretical calculations of amorphous lead titanate indicate that the formation of fivefold coordination in the amorphous system may introduce delocalized electronic levels in the HOMO ( highest occupied molecular orbital) and the LUMO ( lowest unoccupied molecular orbital). A comparison of the experimental and theoretical results of amorphous compounds suggests the possibility of a radiative recombination (electron-hole pairs), which may be responsible for the emission of photoluminescence. (C) 2003 Kluwer Academic Publishers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the nature of visible photoluminescence at room temperature in amorphous strontium titanate in the light of the results of a recent experimental and quantum mechanical theoretical study. Our calculation of the electronic structure involves the use of first-principles molecular calculations to simulate the variation of the electronic structure in the strontium titanate crystalline phase, which is known to have a direct band gap, and we also make an in-depth examination of amorphous strontium titanate. The results of our simulations of amorphous strontium titanate indicate that the formation of five-fold coordination in the amorphous system may introduce delocalized electronic levels in the highest occupied molecular orbital and the lowest unoccupied molecular orbital. These delocalized electronic levels are ascribed to the formation of a tail in the absorbance-spectrum curve. Optical absorption measurements experimentally showed the presence of a tail. The results are interpreted by the nature of these exponential optical edges and tails associated with defects promoted by the disordered structure of the amorphous material. We associate them with localized states in the band gap.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A quantitative structure-activity relationship (QSAR) study of 19 quinone compounds with trypanocidal activity was performed by Partial Least Squares (PLS) and Principal Component Regression (PCR) methods with the use of leave-one-out crossvalidation procedure to build the regression models. The trypanocidal activity of the compounds is related to their first cathodic potential (Ep(c1)). The regression PLS and PCR models built in this study were also used to predict the Ep(c1) of six new quinone compounds. The PLS model was built with three principal components that described 96.50% of the total variance and present Q(2) = 0.83 and R-2 = 0.90. The results obtained with the PCR model were similar to those obtained with the PLS model. The PCR model was also built with three principal components that described 96.67% of the total variance with Q(2) = 0.83 and R-2 = 0.90. The most important descriptors for our PLS and PCR models were HOMO-1 (energy of the molecular orbital below HOMO), Q4 (atomic charge at position 4), MAXDN (maximal electrotopological negative difference), and HYF (hydrophilicity index).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tetrahedral nickel(0) complexes [NiL4], [Ni(dppe)2] and [Ni(CO)2(SbPh3)2] (L=AsPh3, SbPh3, P(OPh)3, dppe=1,2-bis(diphenylphosphino)ethane) were prepared by reduction of NiCl2·6H2O with NaBH4 under N2 or CO atmosphere in the presence of the ligand. The complex [Ni(SbPh3)4] was also obtained by electrolysis at -1.3 V (Ag/Ag+), under a platinum gauze, of the system NiCl2·6H2O/SbPh3 (molar ratio=1:4). These complexes, both in the solid state and in solution, show an orange emission at room temperature, when excited with UV radiation. A qualitative molecular orbital diagram for the [NiL4] complexes is proposed. Electronic absorption spectra of the complexes show bands near 400 nm assigned as MLCT π*2e←d2t2. A 1A1←3T1 transition is suggested for the emission observed in these systems. Lifetimes in microsecond range were estimated from time-resolved emission spectra. Spectroscopic properties of the free ligands have also been investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Métodos quimiométricos (estatísticos) são empregados para classificar um conjunto de compostos derivados de neolignanas com atividade biológica contra a Paracoccidioides brasiliensis. O método AM1 (Austin Model 1) foi utilizado para calcular um conjunto de descritores moleculares (propriedades) para os compostos em estudo. A seguir, os descritores foram analisados utilizando os seguintes métodos de reconhecimento de padrões: Análise de Componentes Principais (PCA), Análise Hierárquica de Agrupamentos (HCA) e o método de K-vizinhos mais próximos (KNN). Os métodos PCA e HCA mostraram-se bastante eficientes para classificação dos compostos estudados em dois grupos (ativos e inativos). Três descritores moleculares foram responsáveis pela separação entre os compostos ativos e inativos: energia do orbital molecular mais alto ocupado (EHOMO), ordem de ligação entre os átomos C1'-R7 (L14) e ordem de ligação entre os átomos C5'-R6 (L22). Como as variáveis responsáveis pela separação entre compostos ativos e inativos são descritores eletrônicos, conclui-se que efeitos eletrônicos podem desempenhar um importante papel na interação entre receptor biológico e compostos derivados de neolignanas com atividade contra a Paracoccidioides brasiliensis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O método do orbital molecular AM1 foi empregado para calcular um conjunto de descritores moleculares para vinte neolignanas sintéticas com atividade anti-esquistossomose. O método de reconhecimento de padrão (análise de componentes principais ACP, análise de conglomerados AC e análise de discriminante) foi utilizado para obter a relação entre a estrutura molecular e a atividade biológica. O conjunto de moléculas foi classificado em dois grupos de acordo com seus graus de atividade biológica. Estes resultados permitem que, projete-se racionalmente novos compostos, potenciais candidatos à síntese e à avaliação biológica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2-Acetylpyridine-phenylhydrazone (H2AcPh), its para-chlorophenylhydrazone (H2AcpClPh) and para-nitrophenylhydrazone (H2AcpNO(2)Ph) analogues, the corresponding 2-benzoylpyridine-derived hydrazones (H2BzPh, H2BzpClPh and H2BzpNO(2)Ph) and their gallium(III) complexes were assayed for their cytotoxic activity against U87 (expressing wild-type p53 protein) and T98 (expressing mutant p53 protein) glioma cells. IC50 values against both glioma cells and against the MRC5 (human fetal lung fibroblast) lineage were obtained for the hydrazones, but not for their gallium(III) complexes, due to their low solubility. Hydrazones were highly cytotoxic at nanomolar doses against U87 and T98 cells. The therapeutic indexes (TI = IC50MRC5/IC50glioma) were 2-660 for T98 cells and 28-5000 for U87 cells, indicating that the studied hydrazones could be good antitumor drug candidates to treat brain tumors. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthesis, characterization, DFT simulation and biological assays of two new metal complexes of 2-(2-thienyl)benzothiazole - BTT are reported. The complexes [Ag(BTT)(2)NO3] - AgBTT2 and [Au(BTT)Cl]center dot 1/2H(2)O - AuBTT were obtained by mixing the ligand with silver (I) nitrate or gold(I) chloride in methanolic solution. Characterization of the complexes were based on elemental (C, H, N and S), thermal (TG-DTA) analysis, C-13 and H-1 NMR, FT-IR and UV-Vis spectroscopic measurements, as well as the X-ray structure determination for AgBTT2. Spectroscopic data predicted by DFT calculations were in agreement with the experimental data for both complexes. The ligand BTT was synthesized by the condensation of 2-thiophenecarboxaldehyde and 2-aminothiophenol in a microwave furnace. AgBTT2 has a monomeric structure. Both complexes show a good activity against Mycobacterium tuberculosis. Free BIT shows low antitubercular activity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-4-Phenyl 2-acetylpyridine thiosemicarbazone (H2Ac4Ph; N-(phenyl)-2-(1-(pyridin-2-yl)ethylidene) hydrazinecarbothioamide) and its N-4-ortho-, -meta- and -para-fluorophenyl (H2Ac4oFPh, H2Ac4mFPh, H2Ac4pFPh), N-4-ortho-, -meta- and -para-chlorophenyl (H2Ac4oClPh, H2Ac4mClPh, H2Ac4pClPh), N-4-ortho-, -meta- and -para-iodophenyl (H2Ac4oIPh, H2Ac4mIPh, H2Ac4pIPh) and N-4-ortho-, -meta- and -para-nitrophenyl (H2Ac4oNO(2)Ph, H2Ac4mNO(2)Ph, H2Ac4pNO(2)Ph) derivatives were assayed for their cytotoxicity against human malignant breast (MCF-7) and glioma (T98G and U87) cells. The compounds were highly cytotoxic against the three cell lineages (IC50: MCF-7, 52-0.16 nM; T98G, 140-1.0 nM; U87, 160-1.4 nM). All tested thiosemicarbazones were more cytotoxic than etoposide and did not present any haemolytic activity at up to 10(-5) M. The compounds were able to induce programmed cell death. H2Ac4pClPh partially inhibited tubulin assembly at high concentrations and induced cellular microtubule disorganization. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water is one of the most common compounds on earth and is essential for all biological activities. Water has, however, been a mystery for many years due to the large number of unusual chemical and physical properties, e.g. decreased volume during melting and maximum density at 4 °C. The origin of the anomalies behavior is the nature of the hydrogen bond. This thesis will presented an x-ray absorption spectroscopy (XAS) study to reveal the hydrogen bond structure in liquid water. The x-ray absorption process is faster than a femtosecond and thereby reflects the molecular orbital structure in a frozen geometry locally around the probed water molecules. The results indicate that the electronic structure of liquid water is significantly different from that of the solid and gaseous forms. The molecular arrangement in the first coordination shell of liquid water is actually very similar as the two-hydrogen-bonded configurations at the surface of ice. This discovery suggests that most molecules in liquid water have two-hydrogen-bonded configurations with one donor and one acceptor hydrogen bond compared to the four-hydrogen-bonded tetrahedral structure in ice. This result is controversial since the general picture is that the structure of liquid water is very similar to the structure of ice. The results are, however, consistent with x-ray and neutron diffraction data but reveals serious discrepancies with structures based on current molecular dynamics simulations. The two-hydrogen-bond configuration in liquid water is rigid and heating from 25 °C to 90 °C introduce a minor change in the hydrogen-bonded configurations. Furthermore, XAS studies of water in aqueous solutions show that ion hydration does not affect the hydrogen bond configuration of the bulk. Only water molecules in the close vicinity to the ions show changes in the hydrogen bond formation. XAS data obtained with fluorescence yield are sensitive enough to resolved electronic structure of water molecules in the first hydration sphere and to distinguish between different protonated species. Hence, XAS is a useful tool to provide insight into the local electronic structure of a hydrogen-bonded liquid and it is applied for the first time on water revealing unique information of high importance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The results are compared for the different compounds and methods and, where available, with experimental data. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. When taking only intra-columnar transport into account, the mobility is orders of magnitude lower than in the three-dimensional case. BTBT is a promising material for solution-processed organic field-effect transistors. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The resulting broad transfer integral distributions modify the connectivity of the system but sufficiently many fast percolation paths remain for the charges. Rubrene, indolocarbazole and BBBT are examples of crystals without significant static disorder. The high mobility of rubrene is explained by two main features: first, the shifted cofacial alignment of its molecules, and second, the high center of mass vibrational frequency. In comparsion to SCD, only KMC based on Marcus rates is capable of describing neighbors with low coupling and of taking static disorder into account three-dimensionally. Thus it is the method of choice for crystalline systems dominated by static disorder. However, it is inappropriate for the case of strong coupling and underestimates the mobility of well-ordered crystals. SCD, despite its one-dimensionality, is valuable for crystals with strong coupling and little disorder. It also allows correct treatment of dynamical effects, such as intermolecular vibrations of the molecules. Rate equations are incapable of this, because simulations are performed on static snapshots. We have thus shown strengths and weaknesses of two state of the art models used to study charge transport in organic compounds, partially developed a program to compute and visualize transfer integral distributions and other charge transport properties, and found structure-mobility relations for several promising organic semiconductors.