911 resultados para macromolecules


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of the ionophore antibiotic lasalocid-A with lithium perchlorate in acetonitrile has been studied by circular dichroism (c.d.) and 1H, 13C and 7Li nuclear magnetic resonance (n.m.r.) techniques. Analysis of the c.d. data has shown that both the 2:1 sandwich (ionophore-cation-ionosphore) complex and 1:1 complex coexist in solution. The n.m.r. data are consistent with a conformational model in which the carbonyl oxygen, he tetrahydrofuran and the tetrahydropyran ring oxygen atoms, two hydroxyl group oxygens and either a water or a solvent molecule coordinate to the lithium ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Possible conformations of penicillin G; d and l isomers of ampicillin; α-amino-α-methyl-benzyl penicillins and 3- pyridyl methyl penicillin have been studied by an energy minimization procedure using empirical potential functions. The preferred conformations of these antibiotics have been correlated with their biological activity. The conformational requirement of the antibiotic to be active against Gram-positive and Gram-negative (β-lactamase-negative) bacterial strains seems to be the same. The reduced activity of penicillin G against Gram-negative bacteria has been attributed to its lower ability to permeate the outer membrane. The flexibility of the sidechains of these antibiotics is also shown to be important for the desired biological activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compilation of crystal structure data on deoxyribo- and ribonucleosides and their higher derivatives is presented. The aim of this paper is to highlight the flexibility of deoxyribose and ribose rings. So far, the conformational parameters of nucleic acids constituents of ribose and deoxyribose have not been analysed separately. This paper aims to correlate the conformational parameters with the nature and puckering of the sugar. Deoxyribose puckering occurs in the C2′ endo region while ribose puckering is observed both in the C3′ endo and C2′ endo regions. A few endocyclic and exocyclic bond angles depend on the puckering and the nature of the sugar. The majority of structures have an anti conformation about the glycosyl bond. There appears to be a puckering dependence on the torsion angle about the C4′---C5′ bonds. Such stereochemical information is useful in model building studies of polynucleotides and nucleic acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intramolecularly hydrogen bonded conformations of (Aib-Pro)n sequences have been analysed theoretically. Both 4-1 (C10 and 3-1 (C7 hydrogen bonded regular structures are shown to be stereochemically feasible. Conformational energies for the helical structures have been estimated using classical potential energy methods. Both C10 and C7 conformations have very similar energies. Pyrrolidine ring puckering has a pronounced effect on the energies, and only Cv-endo puckered Pro residues can be accommodated. The theoretical calculations using spectroscopic data suggest that the recently proposed novel 310 helical conformation for benzyloxycarbonyl(Aib-Pro)4-methyl ester is in solution, is indeed energetically and stereochemically favourable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Empirical potential energy calculations have been carried out to determine the preferred conformations of some oligosaccharides having the trimannosidic core structure (Man3GlcNAc2) and which interact with concanavalin A. In the minimum energy conformations for the trimannosidic core the mannose residue on the Man α(1–6) arm comes close to one of the N-acetylglucosamine residues of the core. The addition of N-acetylglucosamine residues to the terminal mannose residues does not alter the preferred conformation of the trimannosidic core although it alters the relative preference of some of the higher energy conformations. The minimum energy conformation broadly agrees with available X-ray data. The presence of a bisecting N-acetylglucosamine residue on the middle mannose does not push the trimannosidic core to any new conformation but it does alter the relative preference for a particular conformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The probable modes of binding of some complex carbohydrates, which have the trimannosidic core structure (Man3GlcNAc2), to concanavalin A (Con A) have been determined using a computer modelling technique. These studies show that Con a can bind to the terminal mannose residues of the trimannosidic core structure and to the internal mannosyl as well as to the terminal N-acetylglucosamine residues of the N-acetylglucosamine substituted trimannosidic core structure. The oligosaccharide with terminal mannose residues can bind in its minimum energy conformers, whereas the oligosaccharide with internal mannosyl and terminal N-acetylglucosamine residues can bind only in higher energy conformers. In addition the former oligosaccharide forms more hydrogen bonds with Con A than the latter. These results suggest that, for these oligosaccharides, the terminal mannose residue has a much higher probability of reaching the binding site than either the internal mannosyl or the terminal N-acetylglucosamine residues. The substitution of a bisecting N-acetylglucosamine residue on these oligosaccharides, affects significantly the accessibility of the residues which bind to Con A and thereby reduces their binding affinity. It thus seems that the binding affinity of an oligosaccharide to Con A depends not only on the number of sugar residues which possess free 3-, 4- and 6-hydroxyl groups but also on the accessibility of these sugar residues to Con A. This study also reveals that the sugar binding site of Con A is small and that the interactions between Con A and carbohydrates are extended slightly beyond the single sugar residue that is placed in the binding site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Left handed duplexes are shown to be in agreement with the X-ray intensity data of A-, B- and D-forms of DNA. The structures are stereochemically satisfactory because they were obtained following a stereochemical guideline derived from theory and single crystal structure data of nucleic acid components. The same stereochemical guideline also led to right handed duplexes for B- and D-forms of DNA which have stereochemically preferred conformation and hence are superior to those given by Arnott and coworkers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gram-negative bacteria are harmful in various surroundings. In the food industy their metabolites are potential cause of spoilage and this group also includes many severe or potential pathogens, such as Salmonella. Due to their ability to produce biofilms Gram-negative bacteria also cause problems in many industrial processes as well as in clinical surroundings. Control of Gram-negative bacteria is hampered by the outer membrane (OM) in the outermost layer of the cells. This layer is an intrinsic barrier for many hydrophobic agents and macromolecules. Permeabilizers are compounds that weaken OM and can thus increase the activity of antimicrobials by facililating entry of hydrophobic compounds and macromolecules into the cell where they can reach their target sites and inhibit or destroy cellular functions. The work described in this thesis shows that lactic acid acts as a permeabilizer and destabilizes the OM of Gram-negative bacteria. In addition, organic acids present in berriers, i.e. malic, sorbic and benzoic acid, were shown to weaken the OM of Gram-negative bacteria. Organic acids can poteniate the antimicrobial activity of other compounds. Microbial colonic degradation products of plant-derived phenolic compounds (3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3,4-dihydroxyphenylpropionic acid, 4-hydroxyphenylpropionic acid, 3-phenylpropionic acid and 3-hydroxyphenylpropionic acid) efficiently destabilized OM of Salmonella. The studies increase our understanding of the mechanism of action of the classical chelator, ethylenediaminetetra-acetic acid (EDTA). In addition, the results indicate that the biocidic activity of benzalkonium chloride against Pseudomonas can be increased by combined use with polyethylenimine (PEI). In addition to PEI, several other potential permeabilizers, such as succimer, were shown to destabilize the OM of Gram-negative bacteria. Furthermore, combination of the results obtained from various permeability assays (e.g. uptake of a hydrophobic probe, sensitization to hydrophobic antibiotics and detergents, release of lipopolysaccharide (LPS) and LPS-specific fatty acids) with atomic force microscopy (AFM) image results increases our knowledge of the action of permeabilizers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Empirical potential energy calculations have been carried out to determine the preferred conformations of penicillins and penicillin sulphones and their 1-oxa-1-dethia and 1-carba-1-dethia analogues. With the exception of 1-oxa-1-dethia penicillins, all the other compounds favour C2 and the C3 puckered conformations of their five-membered rings. Replacement of C2 methyl groups by hydrogen atoms as in bisnorpenicillin V or oxidation of sulphur in position 1 as in sulphones, makes the C3 puckered form much less favourable. Addition of an amino-acyl group at the C6 atom, however, makes the C3 puckered form more favoured in penicillin G or V and in 1-carba-1-dethia penicillins. Through the replacement of the sulphur atom at position 1 by an oxygen atom or by a -CH2 group increases the non-planarity of the lactam peptide bond, it significantly affects the relative disposition of the C3 carboxyl group with respect to the β-lactam ring. These conformational differences have been correlated with the biological activities of these compounds. The present study suggests that the conformation of the bicyclic ring system may be more important for initial binding with the crosslinking enzyme(s) involved in the biosynthesis of bacterial cell-wall peptidoglycan and that the mode of binding is influenced by the nature of the side-group at the C6 atom. These studies predict, in agreement with experimental results, that the 1-oxa-1-dethia penicillin nulceus is an inhibitor of penicillianses. The study also suggests that the stereospecificities of the crosslinking enzyme(s) and penicillinases are very similar with regard to the nature of the side-group at the 6 atom and the confirmation of the bicyclic ring system. However, the confirmational requirement for the bicyclic ring system appears to be more specific in the former enzyme than in the latter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthesis is a chemical process in which the energy of the light quanta is transformed into chemical energy. Chlorophyll (Chl) molecules play a key role in photosynthesis; they function in the antennae systems and in the photosynthetic reaction center where the primary charge separation (CS) takes place. Bio-inspired mimicry of the CS is an essential unit in dye-sensitized solar cells. Aim of this study was to design and develop electron donor-acceptor (EDA) pairs from Chls and fullerenes (C60) or carbon nanotubes (CNT). The supramolecular approach was chosen, as long synthetic sequences required by the covalent approach lead to long reaction schemes and low yields. Here, a π-interaction between soluble CNTs and Chl was used in EDA construction. Also, a beta-face selective two-point bound Chl-C60 EDA was introduced. In addition, the photophysical properties of the supramolecular EDA dyads were analyzed. In organic chemistry, nuclear magnetic resonance (NMR) spectroscopy is the most vital analytical technique in use. Multi-dimensional NMR experiments have enabled a structural analysis of complex natural products and proteins. However, in mixture analysis NMR is still facing difficulties. In many cases overlapping signals can t be resolved even with the help of multi-dimensional experiments. In this work, an NMR tool based on simple host-guest chemistry between analytes and macromolecules was developed. Diffusion ordered NMR spectroscopy (DOSY) measures the mobilities of compounds in an NMR sample. In a liquid state NMR sample, each of the analytes has a characteristic diffusion coefficient, which is proportional to the size of the analyte. With normal DOSY experiment, provided that the diffusion coefficients of the analytes differ enough, individual spectra of analytes can be extracted. When similar sized analytes differ chemically, an additive can be introduced into the sample. Since macromolecules in a liquid state NMR sample can be considered practically stationary, even faint supramolecular interaction can change the diffusion coefficient of the analyte sufficiently for a successful resolution in DOSY. In this thesis, polyvinylpyrrolidone and polyethyleneglycol enhanced DOSY NMR techniques, which enable mixture analysis of similar in size but chemically differing natural products, are introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural biology is a branch of science that concentrates on the relationship between the structure and function of biological macromolecules. The prevalence of a large number of three dimensional structures offers effective tools for bio-scientists to understand the living world. Actin is the most abundant cellular protein and one of its main functions is to produce movement in living cells. Actin forms filaments that are dynamic and which are regulated by a number of different proteins. A class of these regulatory proteins contains actin depolymerizing factor homology (ADF-H) domains. These directly interact with actin through their ADF-H domains. Although ADF-H domains possess very similar three dimensional structures to one another, they vary in their functional properties. One example of this is the ability to bind to actin monomers or filaments. During the work for this thesis two structures of ADF-H domains were solved by nuclear magnetic resonance spectroscopy (NMR). The elucidated structures help us understand the binding specificities of the ADF-H family members.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intramolecularly hydrogen bonded conformations of (Aib-Pro)n sequences have been analysed theoretically. Both 4�1 (C10 and 3�1 (C7 hydrogen bonded regular structures are shown to be stereochemically feasible. Conformational energies for the helical structures have been estimated using classical potential energy methods. Both C10 and C7 conformations have very similar energies. Pyrrolidine ring puckering has a pronounced effect on the energies, and only Cγ-endo puckered Pro residues can be accommodated. The theoretical calculations using spectroscopic data suggest that the recently proposed novel 310 helical conformation for benzyloxycarbonyl(Aib-Pro)4-methyl ester is in solution, is indeed energetically and stereochemically favourable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolism is the cellular subsystem responsible for generation of energy from nutrients and production of building blocks for larger macromolecules. Computational and statistical modeling of metabolism is vital to many disciplines including bioengineering, the study of diseases, drug target identification, and understanding the evolution of metabolism. In this thesis, we propose efficient computational methods for metabolic modeling. The techniques presented are targeted particularly at the analysis of large metabolic models encompassing the whole metabolism of one or several organisms. We concentrate on three major themes of metabolic modeling: metabolic pathway analysis, metabolic reconstruction and the study of evolution of metabolism. In the first part of this thesis, we study metabolic pathway analysis. We propose a novel modeling framework called gapless modeling to study biochemically viable metabolic networks and pathways. In addition, we investigate the utilization of atom-level information on metabolism to improve the quality of pathway analyses. We describe efficient algorithms for discovering both gapless and atom-level metabolic pathways, and conduct experiments with large-scale metabolic networks. The presented gapless approach offers a compromise in terms of complexity and feasibility between the previous graph-theoretic and stoichiometric approaches to metabolic modeling. Gapless pathway analysis shows that microbial metabolic networks are not as robust to random damage as suggested by previous studies. Furthermore the amino acid biosynthesis pathways of the fungal species Trichoderma reesei discovered from atom-level data are shown to closely correspond to those of Saccharomyces cerevisiae. In the second part, we propose computational methods for metabolic reconstruction in the gapless modeling framework. We study the task of reconstructing a metabolic network that does not suffer from connectivity problems. Such problems often limit the usability of reconstructed models, and typically require a significant amount of manual postprocessing. We formulate gapless metabolic reconstruction as an optimization problem and propose an efficient divide-and-conquer strategy to solve it with real-world instances. We also describe computational techniques for solving problems stemming from ambiguities in metabolite naming. These techniques have been implemented in a web-based sofware ReMatch intended for reconstruction of models for 13C metabolic flux analysis. In the third part, we extend our scope from single to multiple metabolic networks and propose an algorithm for inferring gapless metabolic networks of ancestral species from phylogenetic data. Experimenting with 16 fungal species, we show that the method is able to generate results that are easily interpretable and that provide hypotheses about the evolution of metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.