997 resultados para gauge field
Resumo:
Gravitaation kvanttiteorian muotoilu on ollut teoreettisten fyysikkojen tavoitteena kvanttimekaniikan synnystä lähtien. Kvanttimekaniikan soveltaminen korkean energian ilmiöihin yleisen suhteellisuusteorian viitekehyksessä johtaa aika-avaruuden koordinaattien operatiiviseen ei-kommutoivuuteen. Ei-kommutoivia aika-avaruuden geometrioita tavataan myös avointen säikeiden säieteorioiden tietyillä matalan energian rajoilla. Ei-kommutoivan aika-avaruuden gravitaatioteoria voisi olla yhteensopiva kvanttimekaniikan kanssa ja se voisi mahdollistaa erittäin lyhyiden etäisyyksien ja korkeiden energioiden prosessien ei-lokaaliksi uskotun fysiikan kuvauksen, sekä tuottaa yleisen suhteellisuusteorian kanssa yhtenevän teorian pitkillä etäisyyksillä. Tässä työssä tarkastelen gravitaatiota Poincarén symmetrian mittakenttäteoriana ja pyrin yleistämään tämän näkemyksen ei-kommutoiviin aika-avaruuksiin. Ensin esittelen Poincarén symmetrian keskeisen roolin relativistisessa fysiikassa ja sen kuinka klassinen gravitaatioteoria johdetaan Poincarén symmetrian mittakenttäteoriana kommutoivassa aika-avaruudessa. Jatkan esittelemällä ei-kommutoivan aika-avaruuden ja kvanttikenttäteorian muotoilun ei-kommutoivassa aika-avaruudessa. Mittasymmetrioiden lokaalin luonteen vuoksi tarkastelen huolellisesti mittakenttäteorioiden muotoilua ei-kommutoivassa aika-avaruudessa. Erityistä huomiota kiinnitetään näiden teorioiden vääristyneeseen Poincarén symmetriaan, joka on ei-kommutoivan aika-avaruuden omaama uudentyyppinen kvanttisymmetria. Seuraavaksi tarkastelen ei-kommutoivan gravitaatioteorian muotoilun ongelmia ja niihin kirjallisuudessa esitettyjä ratkaisuehdotuksia. Selitän kuinka kaikissa tähänastisissa lähestymistavoissa epäonnistutaan muotoilla kovarianssi yleisten koordinaattimunnosten suhteen, joka on yleisen suhteellisuusteorian kulmakivi. Lopuksi tutkin mahdollisuutta yleistää vääristynyt Poincarén symmetria lokaaliksi mittasymmetriaksi --- gravitaation ei-kommutoivan mittakenttäteorian saavuttamisen toivossa. Osoitan, että tällaista yleistystä ei voida saavuttaa vääristämällä Poincarén symmetriaa kovariantilla twist-elementillä. Näin ollen ei-kommutoivan gravitaation ja vääristyneen Poincarén symmetrian tutkimuksessa tulee jatkossa keskittyä muihin lähestymistapoihin.
Resumo:
This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.
Resumo:
The description of quarks and gluons, using the theory of quantum chromodynamics (QCD), has been known for a long time. Nevertheless, many fundamental questions in QCD remain unanswered. This is mainly due to problems in solving the theory at low energies, where the theory is strongly interacting. AdS/CFT is a duality between a specific string theory and a conformal field theory. Duality provides new tools to solve the conformal field theory in the strong coupling regime. There is also some evidence that using the duality, one can get at least qualitative understanding of how QCD behaves at strong coupling. In this thesis, we try to address some issues related to QCD and heavy ion collisions, applying the duality in various ways.
Resumo:
Given a classical dynamical theory with second-class constraints, it is sometimes possible to construct another theory with first-class constraints, i.e., a gauge-invariant one, which is physically equivalent to the first theory. We identify some conditions under which this may be done, explaining the general principles and working out several examples. Field theoretic applications include the chiral Schwinger model and the non-linear sigma model. An interesting connection with the work of Faddeev and Shatashvili is pointed out.
Resumo:
We consider minimal models of gauge mediated supersymmetry breaking with an extra U(1) factor in addition to the Standard Model gauge group. A U(1) charged, Standard Model singlet is assumed to be present which allows for an additional NMSSM like coupling, lambda HuHdS. The U(1) is assumed to be flavour universal. Anomaly cancellation in the MSSM sector requires additional coloured degrees of freedom. The S field can get a large vacuum expectation value along with consistent electroweak symmetry breaking. It is shown that the lightest CP even Higgs boson can attain mass of the order of 125 GeV. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
Resumo:
Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoemits electrons due to nonequilibrium effects.
Resumo:
Since the discovery of D-branes as non-perturbative, dynamic objects in string theory, various configurations of branes in type IIA/B string theory and M-theory have been considered to study their low-energy dynamics described by supersymmetric quantum field theories.
One example of such a construction is based on the description of Seiberg-Witten curves of four-dimensional N = 2 supersymmetric gauge theories as branes in type IIA string theory and M-theory. This enables us to study the gauge theories in strongly-coupled regimes. Spectral networks are another tool for utilizing branes to study non-perturbative regimes of two- and four-dimensional supersymmetric theories. Using spectral networks of a Seiberg-Witten theory we can find its BPS spectrum, which is protected from quantum corrections by supersymmetry, and also the BPS spectrum of a related two-dimensional N = (2,2) theory whose (twisted) superpotential is determined by the Seiberg-Witten curve. When we don’t know the perturbative description of such a theory, its spectrum obtained via spectral networks is a useful piece of information. In this thesis we illustrate these ideas with examples of the use of Seiberg-Witten curves and spectral networks to understand various two- and four-dimensional supersymmetric theories.
First, we examine how the geometry of a Seiberg-Witten curve serves as a useful tool for identifying various limits of the parameters of the Seiberg-Witten theory, including Argyres-Seiberg duality and Argyres-Douglas fixed points. Next, we consider the low-energy limit of a two-dimensional N = (2, 2) supersymmetric theory from an M-theory brane configuration whose (twisted) superpotential is determined by the geometry of the branes. We show that, when the two-dimensional theory flows to its infra-red fixed point, particular cases realize Kazama-Suzuki coset models. We also study the BPS spectrum of an Argyres-Douglas type superconformal field theory on the Coulomb branch by using its spectral networks. We provide strong evidence of the equivalence of superconformal field theories from different string-theoretic constructions by comparing their BPS spectra.
Resumo:
We present a complete system for Spectral Cauchy characteristic extraction (Spectral CCE). Implemented in C++ within the Spectral Einstein Code (SpEC), the method employs numerous innovative algorithms to efficiently calculate the Bondi strain, news, and flux.
Spectral CCE was envisioned to ensure physically accurate gravitational wave-forms computed for the Laser Interferometer Gravitational wave Observatory (LIGO) and similar experiments, while working toward a template bank with more than a thousand waveforms to span the binary black hole (BBH) problem’s seven-dimensional parameter space.
The Bondi strain, news, and flux are physical quantities central to efforts to understand and detect astrophysical gravitational wave sources within the Simulations of eXtreme Spacetime (SXS) collaboration, with the ultimate aim of providing the first strong field probe of the Einstein field equation.
In a series of included papers, we demonstrate stability, convergence, and gauge invariance. We also demonstrate agreement between Spectral CCE and the legacy Pitt null code, while achieving a factor of 200 improvement in computational efficiency.
Spectral CCE represents a significant computational advance. It is the foundation upon which further capability will be built, specifically enabling the complete calculation of junk-free, gauge-free, and physically valid waveform data on the fly within SpEC.
Resumo:
The effect on the scattering amplitude of the existence of a pole in the angular momentum plane near J = 1 in the channel with the quantum numbers of the vacuum is calculated. This is then compared with a fourth order calculation of the scattering of neutral vector mesons from a fermion pair field in the limit of large momentum transfer. The presence of the third double spectral function in the perturbation amplitude complicates the identification of pole trajectory parameters, and the limitations of previous methods of treating this are discussed. A gauge invariant scheme for extracting the contribution of the vacuum trajectory is presented which gives agreement with unitarity predictions, but further calculations must be done to determine the position and slope of the trajectory at s = 0. The residual portion of the amplitude is compared with the Gribov singularity.
Resumo:
It is rigorously proved that the Green's function of a uniform two-dimensional interacting electron gas in a perpendicular magnetic field is diagonal with respect to single-particle states in the Landau gauge. The implication of this theorem is briefly discussed.
Resumo:
The vortex solutions of various classical planar field theories with (Abelian) Chern-Simons term are reviewed. Relativistic vortices, put forward by Paul and Khare, arise when the Abelian Higgs model is augmented with the Chern-Simons term. Adding a suitable sixth-order potential and turning off the Maxwell term provides us with pure Chern-Simons theory, with both topological and non-topological self-dual vortices, as found by Hong-Kim-Pac, and by Jackiw-Lee-Weinberg. The non-relativistic limit of the latter leads to non-topological Jackiw-Pi vortices with a pure fourth-order potential. Explicit solutions are found by solving the Liouville equation. The scalar matter field can be replaced by spinors, leading to fermionic vortices. Alternatively, topological vortices in external field are constructed in the phenomenological model proposed by Zhang-Hansson-Kivelson. Non-relativistic Maxwell-Chern-Simons vortices are also studied. The Schrodinger symmetry of Jackiw-Pi vortices, as well as the construction of some time-dependent vortices, can be explained by the conformal properties of non-relativistic space-time, derived in a Kaluza-Klein-type framework. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
To study the injection of additional electrons from an external electron gun into the plasma of a Penning ionization gauge (PIG) ion source, a test bench for the external electron-beam enhancement of the PIG (E-PIG) ion source was set up. A source magnet assembly was built to satisfy the request for magnetic field configuration of the E-PIG ion source. Numerical calculations have been done to optimize the magnetic field configuration so as to fit the primary electrons to be fed into the PIG discharge chamber along the spreading magnetic field lines. Many possible methods for improving the performance and stability of the PIG ion source have been used in the E-PIG ion source, including the use of multicrystal LaB6 cathode and optimized axial magnetic field. This article presents a detailed design of the E-PIG ion source. Substantial enhancement of ion charge state is expected to be observed which demonstrates that the E-PIG is a viable alternative to other much more costly and difficult to operate devices for the production of intense ion beams of higher charge state.
Resumo:
The decomposition of Spin(c)(4) gauge potential in terms of the Dirac 4-spinor is investigated, where an important characterizing equation Delta A(mu) = -lambda A(mu) has been discovered. Here, lambda is the vacuum expectation value of the spinor field, lambda = parallel to Phi parallel to(2), and A(mu) the twisting U(1) potential. It is found that when), takes constant values, the characterizing equation becomes an eigenvalue problem of the Laplacian operator. It provides a revenue to determine the modulus of the spinor field by using the Laplacian spectral theory. The above study could be useful in determining the spinor field and twisting potential in the Seiberg-Witten equations. Moreover, topological characteristic numbers of instantons in the self-dual sub-space are also discussed.
Resumo:
A lateral on-chip electron-impact ion source utilizing a carbon nanotube field emission electron source was fabricated and characterized. The device consists of a cathode with aligned carbon nanotubes, a control grid, and an ion collector electrode. The electron-impact ionization of He, Ar, and Xe was studied as a function of field emission current and pressure. The ion current was linear with respect to gas pressure from 10-4 to 10-1 Torr. The device can operate as a vacuum ion gauge with a sensitivity of approximately 1 Torr-1. Ion currents in excess of 1 μA were generated. © 2007 American Institute of Physics.
Resumo:
We study the problem of consistent interactions for spin-3 gauge fields in flat spacetime of arbitrary dimension 3$">n>3. Under the sole assumptions of Poincaré and parity invariance, local and perturbative deformation of the free theory, we determine all nontrivial consistent deformations of the abelian gauge algebra and classify the corresponding deformations of the quadratic action, at first order in the deformation parameter. We prove that all such vertices are cubic, contain a total of either three or five derivatives and are uniquely characterized by a rank-three constant tensor (an internal algebra structure constant). The covariant cubic vertex containing three derivatives is the vertex discovered by Berends, Burgers and van Dam, which however leads to inconsistencies at second order in the deformation parameter. In dimensions 4$">n>4 and for a completely antisymmetric structure constant tensor, another covariant cubic vertex exists, which contains five derivatives and passes the consistency test where the previous vertex failed. © SISSA 2006.