979 resultados para game model
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
When a stable matching rule is used for a college admission market, questions on incentives facing agents of both sides of the market naturally emerge. This note states and proves four important results which fill a gap in the theory of incentives for the college admission model. Two of them have never been demonstrated but have been used along the years and are responsible for the success that this theory has had in explaining empirical economic phenomena.
Resumo:
Cooperation plays an important role in the evolution of species and human societies. The understanding of the emergence and persistence of cooperation in those systems is a fascinating and fundamental question. Many mechanisms were extensively studied and proposed as supporting cooperation. The current work addresses the role of migration for the maintenance of cooperation in structured populations. This problem is investigated in an evolutionary perspective through the prisoner's dilemma game paradigm. It is found that migration and structure play an essential role in the evolution of the cooperative behavior. The possible outcomes of the model are extinction of the entire population, dominance of the cooperative strategy and coexistence between cooperators and defectors. The coexistence phase is obtained in the range of large migration rates. It is also verified the existence of a critical level of structuring beyond that cooperation is always likely. In resume, we conclude that the increase in the number of demes as well as in the migration rate favor the fixation of the cooperative behavior.
Resumo:
Introduction: Advances in biotechnology have shed light on many biological processes. In biological networks, nodes are used to represent the function of individual entities within a system and have historically been studied in isolation. Network structure adds edges that enable communication between nodes. An emerging fieldis to combine node function and network structure to yield network function. One of the most complex networks known in biology is the neural network within the brain. Modeling neural function will require an understanding of networks, dynamics, andneurophysiology. It is with this work that modeling techniques will be developed to work at this complex intersection. Methods: Spatial game theory was developed by Nowak in the context of modeling evolutionary dynamics, or the way in which species evolve over time. Spatial game theory offers a two dimensional view of analyzingthe state of neighbors and updating based on the surroundings. Our work builds upon this foundation by studying evolutionary game theory networks with respect to neural networks. This novel concept is that neurons may adopt a particular strategy that will allow propagation of information. The strategy may therefore act as the mechanism for gating. Furthermore, the strategy of a neuron, as in a real brain, isimpacted by the strategy of its neighbors. The techniques of spatial game theory already established by Nowak are repeated to explain two basic cases and validate the implementation of code. Two novel modifications are introduced in Chapters 3 and 4 that build on this network and may reflect neural networks. Results: The introduction of two novel modifications, mutation and rewiring, in large parametricstudies resulted in dynamics that had an intermediate amount of nodes firing at any given time. Further, even small mutation rates result in different dynamics more representative of the ideal state hypothesized. Conclusions: In both modificationsto Nowak's model, the results demonstrate the network does not become locked into a particular global state of passing all information or blocking all information. It is hypothesized that normal brain function occurs within this intermediate range and that a number of diseases are the result of moving outside of this range.
Resumo:
Intermediaries permeate modern economic exchange. Most classical models on intermediated exchange are driven by information asymmetry and inventory management. These two factors are of reduced significance in modern economies. This makes it necessary to develop models that correspond more closely to modern financial marketplaces. The goal of this dissertation is to propose and examine such models in a game theoretical context. The proposed models are driven by asymmetries in the goals of different market participants. Hedging pressure as one of the most critical aspects in the behavior of commercial entities plays a crucial role. The first market model shows that no equilibrium solution can exist in a market consisting of a commercial buyer, a commercial seller and a non-commercial intermediary. This indicates a clear economic need for non-commercial trading intermediaries: a direct trade from seller to buyer does not result in an equilibrium solution. The second market model has two distinct intermediaries between buyer and seller: a spread trader/market maker and a risk-neutral intermediary. In this model a unique, natural equilibrium solution is identified in which the supply-demand surplus is traded by the risk-neutral intermediary, whilst the market maker trades the remainder from seller to buyer. Since the market maker’s payoff for trading at the identified equilibrium price is zero, this second model does not provide any motivation for the market maker to enter the market. The third market model introduces an explicit transaction fee that enables the market maker to secure a positive payoff. Under certain assumptions on this transaction fee the equilibrium solution of the previous model applies and now also provides a financial motivation for the market maker to enter the market. If the transaction fee violates an upper bound that depends on supply, demand and riskaversity of buyer and seller, the market will be in disequilibrium.
Resumo:
This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.
Resumo:
Digital game environments are of increasing economic, social and cultural value. As their influence on diverse facets of life grows, states have felt compelled to intervene and secure some public interests. Yet, the contours of a comprehensive governance model are far from recognisable and governments are grappling with the complexity and fluidity of online games and virtual worlds as private spaces and as experimentation fields for creativity and innovation. This book contributes to a more comprehensive and fine-grained understanding of digital game environments, which is a precondition for addressing any of the pressing governance questions posed. Particular attention is given to the concept and policy objective of cultural diversity, which also offers a unique entry point into the discussion of the appropriate legal regulation of digital games. Governance of Digital Game Environments and Cultural Diversity will be of interest to researchers of media law, internet law and governance, cultural studies, anthropology and sociology. As the book addresses a highly topical theme, it will attract the attention of policymakers at national, regional and international levels and will also serve as a great resource tool for scholars in new media and, in particular, digital games and virtual worlds.
Resumo:
Digital game environments are of increasing economic, social and cultural value. As their influence on diverse facets of life grows, states have felt compelled to intervene and secure some public interests. Yet, the contours of a comprehensive governance model are far from recognisable and governments are grappling with the complexity and fluidity of online games and virtual worlds as private spaces and as experimentation fields for creativity and innovation. This book contributes to a more comprehensive and fine-grained understanding of digital game environments, which is a precondition for addressing any of the pressing governance questions posed. Particular attention is given to the concept and policy objective of cultural diversity, which also offers a unique entry point into the discussion of the appropriate legal regulation of digital games. Governance of Digital Game Environments and Cultural Diversity will be of interest to researchers of media law, internet law and governance, cultural studies, anthropology and sociology. As the book addresses a highly topical theme, it will attract the attention of policymakers at national, regional and international levels and will also serve as a great resource tool for scholars in new media and, in particular, digital games and virtual worlds.
Resumo:
Up to 15 people can participate in the game, which is supervised by a moderator. Households consisting of 1-5 people discuss options for diversification of household strategies. Aim of the game: By devising appropriate strategies, households seek to stand up to various types of events while improving their economic and social situation and, at the same time, taking account of ecological conditions. The annual General Community Meeting (GCM) provides an opportunity for households to create a general set-up at the local level that is more or less favourable to the strategies they are pursuing. The development of a community investment strategy, to be implemented by the GCM, and successful coordination between households will allow players to optimise their investments at the household level. The household who owns the most assets at the end of the game wins. Players participate very actively, as the game stimulates lively and interesting discussions. They find themselves confronted with different types of decision-making related to the reality of their daily lives. They explore different ways to model their own household strategies and discuss risks and opportunities. Reflections on the course of the game continually refer to the real-life situations of the participants.
Resumo:
In this paper, we develop a simple model of the rights a government provides its citizenry. Rights are treated as public goods and taken as primitives in agents utility functions; each agent has preferences over the entire policy vector. We model the interaction among citi-zens and the government as a game in which an exogenous lobbying set makes contributions to the government to in uence policy formu-lation in the matter of rights. When examining contribution schedules comprising truthful Nash strategies, we find that members of the lob-bying set obtain rights closer to their most-preferred bundle, while the rights of non-lobbyers further diverge from their most-preferred bun-dle. Further, if the lobbying set comprises the entire population, the government s allocation of rights does not differ from the allocation achieved in the absence of contributions.
A Mathematical Representation of "Excitement" in Games: A Contribution to the Theory of Game Systems
Resumo:
Researchers have long believed the concept of "excitement" in games to be subjective and difficult to measure. This paper presents the development of a mathematically computable index that measures the concept from the viewpoint of an audience and from that of a player. One of the key aspects of the index is the differential of the probability of "winning" before and after one specific "play" in a given game. The index makes a large contribution to the study of games and enables researchers to compare and analyze the “excitement” of various games. It may be applied in many fields, especially the area of welfare economics, and applications may range from those related to allocative efficiency to axioms of justice and equity.
Resumo:
Recently, steady economic growth rates have been kept in Poland and Hungary. Money supplies are growing rather rapidly in these economies. In large, exchange rates have trends of depreciation. Then, exports and prices show the steady growth rates. It can be thought that per capita GDPs are in the same level and development stages are similar in these two countries. It is assumed that these two economies have the same export market and export goods are competing in it. If one country has an expansion of monetary policy, price increase and interest rate decrease. Then, exchange rate decrease. Exports and GDP will increase through this phenomenon. At the same time, this expanded monetary policy affects another country through the trade. This mutual relationship between two countries can be expressed by the Nash-equilibrium in the Game theory. In this paper, macro-econometric models of Polish and Hungarian economies are built and the Nash- equilibrium is introduced into them.
Resumo:
Abstract This work is focused on the problem of performing multi‐robot patrolling for infrastructure security applications in order to protect a known environment at critical facilities. Thus, given a set of robots and a set of points of interest, the patrolling task consists of constantly visiting these points at irregular time intervals for security purposes. Current existing solutions for these types of applications are predictable and inflexible. Moreover, most of the previous centralized and deterministic solutions and only few efforts have been made to integrate dynamic methods. Therefore, the development of new dynamic and decentralized collaborative approaches in order to solve the aforementioned problem by implementing learning models from Game Theory. The model selected in this work that includes belief‐based and reinforcement models as special cases is called Experience‐Weighted Attraction. The problem has been defined using concepts of Graph Theory to represent the environment in order to work with such Game Theory techniques. Finally, the proposed methods have been evaluated experimentally by using a patrolling simulator. The results obtained have been compared with previous available
Resumo:
In this work, an improvement of the results presented by [1] Abellanas et al. (Weak Equilibrium in a Spatial Model. International Journal of Game Theory, 40(3), 449-459) is discussed. Concretely, this paper investigates an abstract game of competition between two players that want to earn the maximum number of points from a finite set of points in the plane. It is assumed that the distribution of these points is not uniform, so an appropriate weight to each position is assigned. A definition of equilibrium which is weaker than the classical one is included in order to avoid the uniqueness of the equilibrium position typical of the Nash equilibrium in these kinds of games. The existence of this approximated equilibrium in the game is analyzed by means of computational geometry techniques.
Resumo:
Shading reduces the power output of a photovoltaic (PV) system. The design engineering of PV systems requires modeling and evaluating shading losses. Some PV systems are affected by complex shading scenes whose resulting PV energy losses are very difficult to evaluate with current modeling tools. Several specialized PV design and simulation software include the possibility to evaluate shading losses. They generally possess a Graphical User Interface (GUI) through which the user can draw a 3D shading scene, and then evaluate its corresponding PV energy losses. The complexity of the objects that these tools can handle is relatively limited. We have created a software solution, 3DPV, which allows evaluating the energy losses induced by complex 3D scenes on PV generators. The 3D objects can be imported from specialized 3D modeling software or from a 3D object library. The shadows cast by this 3D scene on the PV generator are then directly evaluated from the Graphics Processing Unit (GPU). Thanks to the recent development of GPUs for the video game industry, the shadows can be evaluated with a very high spatial resolution that reaches well beyond the PV cell level, in very short calculation times. A PV simulation model then translates the geometrical shading into PV energy output losses. 3DPV has been implemented using WebGL, which allows it to run directly from a Web browser, without requiring any local installation from the user. This also allows taken full benefits from the information already available from Internet, such as the 3D object libraries. This contribution describes, step by step, the method that allows 3DPV to evaluate the PV energy losses caused by complex shading. We then illustrate the results of this methodology to several application cases that are encountered in the world of PV systems design. Keywords: 3D, modeling, simulation, GPU, shading, losses, shadow mapping, solar, photovoltaic, PV, WebGL