1000 resultados para enseñanza televisada
Resumo:
La siguiente es una propuesta didáctica para la enseñanza- aprendizaje de la probabilidad clásica en el ámbito escolar. El trabajo se desarrolló con estudiantes de grado octavo, haciendo uso de un problema clásico de la probabilidad, propuesto en el siglo XVII por el Príncipe de Toscana a Galileo Galilei.
Resumo:
A través del taller se muestra la posibilidad del uso del programa computacional Cabri para el desarrollo del pensamiento variacional especialmente; mostrando el comportamiento general de cada una de las funciones trigonométricas en el plano cartesiano, graficándolas en el mismo plano haciendo una simulación de eje y sobre el mismo sistema coordenado.
Resumo:
La teoría de la probabilidad es una rama importante dentro del desarrollo del pensamiento aleatorio, y en general, de la educación matemática, pues promueve el uso de heurísticas para realizar predicciones y tomar decisiones en torno a una situación del diario vivir. Si bien, en los lineamientos curriculares y en los estándares básicos de calidad se citan conceptos y temáticas en relación con la probabilidad que deben ser abordadas en las aulas de clase, las formas usuales de enseñanza ponen en evidencia el énfasis determinista que recae en la cultura escolar.
Resumo:
El informe que se presenta es el resultado de nuestro trabajo de investigación para optar el título de Licenciadas en educación básica con énfasis en matemáticas. Se diseñó e implementó una secuencia de actividades sobre la enseñanza de la noción de Probabilidad marginal y conjunta a 72 estudiantes de Grado Undécimo del Instituto Técnico Industrial Francisco José de Caldas, teniendo como referente la resolución de problemas y la teoría de las situaciones didácticas propuestas por Brousseau.
Resumo:
Hablar sobre la importancia del computador en la enseñanza de la matemática parece ser un tema trillado del cual se hacen todo tipo de especulaciones, desde quienes lo rechazan completamente, hasta quienes lo idealizan atribuyéndole casi un papel mágico llegando inclusive a confundir el “hacer matemáticas ”con utilizar el computador para acortar caminos, corroborar teorías , construir gráficos, realizar cálculos y otros aspectos que son útiles no sólo al “hacer ”sino, también, al “aprender” matemáticas.
Resumo:
En ocasión de la realización de la VI Reunión de Didáctica de la Matemática del Cono Sur realizada en Buenos Aires, Argentina, en Julio de 2002, el mismo grupo de docentes que escribimos el artículo "Poliedros en el aula" que se publicó en el volumen 49 de esta revista, presentamos en un taller la ampliación y continuación de la experiencia allí relatada, al nivel terciario.
Resumo:
En este trabajo se realiza un estudio sobre el contenido estadístico en la PAU del Distrito de Canarias. Se observa que los alumnos prefieren las preguntas de Estadística, y que el uso de los gráficos en la resolución de los problemas, conlleva a que obtengan calificaciones más altas. El análisis de los errores nos permite realizar ciertas propuestas para mejorar el proceso de enseñanza-aprendizaje de la Inferencia Estadística. Creemos conveniente para la asimilación de los conceptos y el desarrollo del razonamiento estadístico el uso de las analogías, el manejo de las TICS y el trabajo de proyectos con datos reales.
Resumo:
Las deducciones que a lo largo de la historia se han realizado en torno al Teorema de Pitágoras pueden ayudar en el proceso de enseñanza-aprendizaje que realmente necesitan nuestros estudiantes, con el fin de que comprendan los conceptos a través de la reconstrucción de un método, de tal manera que no mecanicen reglas sino mas bien se logre aumentar y relacionar los conceptos adquiridos previamente de tal manera que se logre una mejor comprensión. Usaremos el enfoque histórico como una propuesta metodológica que actué como motivación para el alumno, ya que por medio de ella el estudiante descubrirá como generar los conceptos a través de métodos que aprenderá en clase. Discutiremos los conceptos y propiedades fundamentales de magnitudes, tales como la longitud y el área de figuras geométricas dadas en una y dos dimensiones, repasaremos los conceptos del producto notable del cuadrado de la suma de dos cantidades desde el punto de vista geométrico lo cual nos ayudara a inducir la demostración del Teorema de Pitágoras a través de triángulos rectángulos notables e isósceles rectángulos, tomando en consideración el área de los cuadrados que se encuentra en los lados de dichos triángulos. Esto nos ayudara a recalcar la generalización del Teorema de Pitágoras a través de figuras regulares. Las deducciones se harán pasando de la rama de la matemática llamada Álgebra, conjugándola o dándole soporte con otra que muestra la forma estructural, como lo es la Geometría.
Resumo:
La matemática es un idioma como varios autores han mencionado en diferentes trabajos científicos. En este artículo se analizan y comparan cuatro componentes del lenguaje y la matemática. Por otra parte, la matemática no es exactamente como otros idiomas. De hecho, la matemática parece ser más precisa y más limitada que los otros idiomas y esto tiene varias consecuencias en lo que se refiere a la enseñanza de dicha disciplina. En este artículo comentaremos nuestras experiencias, desarrolladas en Argentina, Alemania y Uruguay, teniendo en cuenta este enfoque de la enseñanza de la matemática como una extensión de la enseñanza de la lengua, y veremos cómo este enfoque ayudó a los estudiantes de los cursos de Cálculo, en diferentes formas.
Resumo:
Uno de los puntos débiles del actual currículo de secundaria en Matemáticas es la enseñanza de la dispersión. Son varios los motivos que ocasionan esta debilidad. En este trabajo se analizarán brevemente algunas investigaciones que nos ayudarán en el aula y en la investigación a mejorar la comprensión de un concepto complejo como es la dispersión. Se indica la importancia de la dispersión en Estadística. Se comprueba que el concepto de dispersión no se incluye en los curriculos oficiales, se analiza el significado de la noción de dispersión y se ejemplifica el desarrollo histórico mediante el devenir a lo largo de la historia de las leyes del error. Finalizamos con unas conclusiones válidas para la enseñanza y la investigación.
Resumo:
A partir de este trabajo se busca establecer una relación entre el análisis epistemológico de la matemática y los procesos de enseñanza-aprendizaje de la geometría, centrados en un estudio de los problemas que históricamente han fundamentado la integral, desde la postura de resolución de problemas, las ventajas e implicaciones para el trabajo en el aula, el docente y el estudiante. Se hace una presentación del trabajo realizado geométrica y analíticamente para obtener las fórmulas del cálculo de área y volumen de algunas figuras, encaminado a un estudio sobre la importancia del tratamiento de situaciones problema para la enseñanza de la geometría, partiendo de los aportes que desde las situaciones históricamente abordadas se pueden realizar al conocimiento del profesor y los aspectos que puede tener en cuenta para orientar la enseñanza.
Resumo:
Una secuencia didáctica se entiende como un sistema de reflexión y actuación del profesor en donde se explicitan aquellos aspectos del quehacer didáctico fundamentales a toda acción de enseñanza y aprendizaje, y en el que participan estudiantes, docentes, saberes y el entorno. En la secuencia didáctica a la que se refiere esta ponencia, propuesta para la enseñanza de la semejanza, los fractales serán el recurso a través del cual se identificarán las características y propiedades de la semejanza. En la planeación se tuvieron en cuenta la relación intrafigural y las transformaciones geométricas propuestas por Lemonidis, como referente teórico para analizar el concepto de semejanza.
Resumo:
En este documento, se presentarán las etapas para diseñar un Modelo Instruccional en ambientes virtuales interactivos para la enseñanza de los números Reales, que tiene en cuenta: la formación matemática de los estudiantes, sus “niveles”, sus ritmos de aprendizaje, sus obstáculos en el aprendizaje y el tiempo oficial propuesto por la institución educativa para abordar los temas. Además, se explicitan, organizan y relacionan muchos de los elementos que se conjugan, y se camuflan, en la enseñanza y el aprendizaje de los temas matemáticos. Este diseño plantea ciertos elementos para el análisis del Discurso Matemático, del discurso didáctico y toma ciertos resultados de las investigaciones en Educación Matemática (Taxonomía SOLO y la Teoría de Súperítemes entre otras) para poner en relación los niveles en el discurso didáctico con los niveles de abstracción de los estudiantes.
Resumo:
En este trabajo se presentan y analizan algunos resultados obtenidos en un estudio sobre creencias, con respecto a las matemáticas y su enseñanza aprendizaje, de los estudiantes de la enseñanza media costarricense.
Resumo:
Ernest (1989) afirmó que las creencias y concepciones de un profesor regulan su práctica de enseñanza en el aula. De esta manera, si se desean cambios en las prácticas de los profesores de matemáticas, al parecer, deben cambiar sus creencias y concepciones. Al respecto se generó la pregunta: ¿es posible cambiar las creencias y concepciones de los profesores? (Thompson, 1991). Las investigaciones de Senger (1999), D’Amore y Fandiño (2004) y Pehkonen (2006), entre otras, han arrojado resultados positivos acerca de que las creencias y concepciones de los profesores pueden cambiar. En este artículo se presentarán los resultados de una investigación cuyo objetivo primordial fue identificar y caracterizar cambios en las concepciones de los estudiantes para profesor de sexto semestre de Licenciatura en Educación Básica con Énfasis en Matemáticas (Bogotá, Colombia). En esencia se presentarán resultados que muestran las concepciones iniciales de los estudiantes y su cambio al finalizar la intervención.