990 resultados para climate trend
Resumo:
High-resolution records of alkenone-derived sea surface temperatures and elemental Ti/Ca ratios from a sediment core retrieved off northeastern Brazil (4° S) reveal short-term climate variability throughout the past 63,000 a. Large pulses of terrigenous sediment discharge, caused by increased precipitation in the Brazilian hinterland, coincide with Heinrich events and the Younger Dryas period. Terrigenous input maxima related to Heinrich events H6-H2 are characterized by rapid cooling of surface water ranging between 0.5 and 2° C. This signature is consistent with a climate model experiment where a reduction of the Atlantic meridional overturning circulation (AMOC) and related North Atlantic cooling causes intensification of NE trade winds and a southward movement of the Intertropical Convergence Zone, resulting in enhanced precipitation off northeastern Brazil. During deglaciation the surface temperature evolution at the core site predominantly followed the Antarctic warming trend, including a cooling, prior to the Younger Dryas period. An abrupt temperature rise preceding the onset of the Bølling/Allerød transition agrees with model experiments suggesting a Southern Hemisphere origin for the abrupt resumption of the AMOC during deglaciation caused by Southern Ocean warming and associated with northward flow anomalies of the South Atlantic western boundary current.
Resumo:
The Southern Hemisphere Westerly Winds (SWW) have been suggested to exert a critical influence on global climate through wind-driven upwelling of deep water in the Southern Ocean and the potentially resulting atmospheric CO2 variations. The investigation of the temporal and spatial evolution of the SWW along with forcings and feedbacks remains a significant challenge in climate research. In this study, the evolution of the SWW under orbital forcing from the early Holocene (9 kyr BP) to pre-industrial modern times is examined with transient experiments using the comprehensive coupled global climate model CCSM3. Analyses of the model results suggest that the annual and seasonal mean SWW were subject to an overall strengthening and poleward shifting trend during the course of the early-to-late Holocene under the influence of orbital forcing, except for the austral spring season, where the SWW exhibited an opposite trend of shifting towards the equator.
Resumo:
The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.
Resumo:
The middle Miocene delta18O increase represents a fundamental change in earth's climate system due to a major expansion and permanent establishment of the East Antarctic Ice Sheet accompanied by some effect of deepwater cooling. The long-term cooling trend in the middle to late Miocene was superimposed by several punctuated periods of glaciations (Mi-Events) characterized by oxygen isotopic shifts that have been related to the waxing and waning of the Antarctic ice-sheet and bottom water cooling. Here, we present a high-resolution benthic stable oxygen isotope record from ODP Site 1085 located at the southwestern African continental margin that provides a detailed chronology for the middle to late Miocene (13.9-7.3 Ma) climate transition in the eastern South Atlantic. A composite Fe intensity record obtained by XRF core scanning ODP Sites 1085 and 1087 was used to construct an astronomically calibrated chronology based on orbital tuning. The oxygen isotope data exhibit four distinct delta18O excursions, which have astronomical ages of 13.8, 13.2, 11.7, and 10.4 Ma and correspond to the Mi3, Mi4, Mi5, and Mi6 events. A global climate record was extracted from the oxygen isotopic composition. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The oxygen isotope data support a causal link between sequence boundaries traced from the shelf and glacioeustatic changes due to ice-sheet growth. Spectral analysis of the benthic delta18O record shows strong power in the 400-kyr and 100-kyr bands documenting a paleoceanographic response to eccentricity-modulated variations in precession. A spectral peak around 180-kyr might be related to the asymmetry of the obliquity cycle indicating that the response of the dominantly unipolar Antarctic ice-sheet to obliquityinduced variations probably controlled the middle to late Miocene climate system. Maxima in the delta18O record, interpreted as glacial periods, correspond to minima in 100-kyr eccentricity cycle and minima in the 174-kyr obliquity modulation. Strong middle to late Miocene glacial events are associated with 400-kyr eccentricity minima and obliquity modulation minima. Thus, fluctuations in the amplitude of obliquity and eccentricity seem to be the driving force for the middle to late Miocene climate variability.
Resumo:
Processes of founding and expanding cities in coastal areas have undergone great changes over time driven by environmental conditions. Coastal settlements looked for places above flood levels and away from swamps and other wetlands whenever possible. As populations grew, cities were extending trying to avoid low and wet lands. No city has been able to limit its growth. The risk of flooding can never be eliminated, but only reduced to the extent possible. Flooding of coastal areas is today dramatically attributed to eustasic sea level rise caused by global climate change. This can be inaccurate. Current climate change is generating an average sea level upward trend, but other regional and local factors result in this trend being accentuated in some places or attenuated, and even reversed, in others. Then, the intensity and frequency of coastal flooding around the planet, although not so much as a unique result of this general eustasic elevation, but rather of the superposition of marine and crustal dynamic elements, the former also climate-related, which give rise to a temporary raising in average sea level in the short term. Since the Little Ice Age the planet has been suffering a global warming change leading to sea level rise. The idea of being too obeying to anthropogenic factors may be attributed to Arrhenius (1896), though it is of much later highlight after the sixties of the last century. Never before, the human factor had been able of such an influence on climate. However, other types of changes in sea levels became apparent, resulting from vertical movements of the crust, modifications of sea basins due to continents fracturing, drifting and coming together, or to different types of climate patterns. Coastal zones are then doubly susceptible to floods. Precipitation immediately triggers pluvial flooding. If it continues upland or when snow and glaciers melt eventually fluvial flooding can occur. The urban development presence represents modifying factors. Additional interference is caused by river and waste water drainage systems. Climate also influences sea levels in coastal areas, where tides as well as the structure and dynamic of the geoid and its crust come into play. From the sea, waters can flood and break or push back berms and other coastline borders. The sea level, controlling the mouth of the main channel of the basin's drainage system, is ultimately what governs flood levels. A temporary rise in sea level acts as a dam at the mouth. Even in absence of that global change, so, floods are likely going to increase in many urban coastal areas. Some kind of innovative methodologies and practices should be needed to get more flood resilience cities
Resumo:
Positive plant interactions have strong effects on plant diversity at several spatial scales, expanding species distribution under stressful conditions. We evaluated the joint effect of climate and grazing on the nurse effect of Croton wagneri, by monitoring several community attributes at two spatial scales: microhabitat and plant community. Two very close locations that only differed in grazing intensity were surveyed in an Ecuadorian dry scrub ecosystem. At each location, two 30 × 30-m plots were established at four altitudinal levels (1500, 2630, 1959 and 2100 m asl) and 40 microsites were surveyed in each plot. Croton wagneri acted as community hubs, increasing species richness and plant cover at both scales. Beneath nurses mean richness and cover values were 3.4 and 21.9%, and in open areas 2.3 and 4.5%, respectively. Magnitude of nurse effect was dependent on climate and grazing conditions. In ungrazed locations, cover increased and diversity reduced with altitude, while grazed locations showed the opposite trend. In ungrazed plots the interactions shifted from positive to negative with altitude, in grazed locations interactions remained positive. We conclude that the nurse effect is a key mechanism regulating community properties not only at microsite but also at the entire community scale.
Resumo:
Calendar date of the beginning of the growing season at high altitude in the Colorado Rocky Mountains is variable but has not changed significantly over the past 25 years. This result differs from growing evidence from low altitudes that climate change is resulting in a longer growing season, earlier migrations, and earlier reproduction in a variety of taxa. At our study site, the beginning of the growing season is controlled by melting of the previous winter's snowpack. Despite a trend for warmer spring temperatures the average date of snowmelt has not changed, perhaps because of the trend for increased winter precipitation. This disjunction between phenology at low and high altitudes may create problems for species, such as many birds, that migrate over altitudinal gradients. We present data indicating that this already may be true for American robins, which are arriving 14 days earlier than they did in 1981; the interval between arrival date and the first date of bare ground has grown by 18 days. We also report evidence for an effect of climate change on hibernation behavior; yellow-bellied marmots are emerging 38 days earlier than 23 years ago, apparently in response to warmer spring air temperatures. Migrants and hibernators may experience problems as a consequence of these changes in phenology, which may be exacerbated if climate models are correct in their predictions of increased winter snowfall in our study area. The trends we report for earlier formation of permanent snowpack and for a longer period of snow cover also have implications for hibernating species.
Resumo:
This paper presents a discussion of the status of the field of coral geochemistry as it relates to the recovery of past records of ocean chemistry, ocean circulation, and climate. The first part is a brief review of coral biology, density banding, and other important factors involved in understanding corals as proxies of environmental variables. The second part is a synthesis of the information available to date on extracting records of the carbon cycle and climate change. It is clear from these proxy records that decade time-scale variability of mixing processes in the oceans is a dominant signal. That Western and Eastern tropical Pacific El Niño-Southern Oscillation (ENSO) records differ is an important piece of the puzzle for understanding regional and global climate change. Input of anthropogenic CO2 to the oceans as observed by 13C and 14C isotopes in corals is partially obscured by natural variability. Nonetheless, the general trend over time toward lower δ18O values at numerous sites in the world’s tropical oceans suggests a gradual warming and/or freshening of the surface ocean over the past century.
Resumo:
We synthesize recent results from lake-sediment studies of Holocene fire-climate-vegetation interactions in Alaskan boreal ecosystems. At the millennial time scale, the most robust feature of these records is an increase in fire occurrence with the establishment of boreal forests dominated by Picea mariana: estimated mean fire-return intervals decreased from ≥300 yrs to as low as ∼80 yrs. This fire-vegetation relationship occurred at all sites in interior Alaska with charcoal-based fire reconstructions, regardless of the specific time of P. mariana arrival during the Holocene. The establishment of P. mariana forests was associated with a regional climatic trend toward cooler/wetter conditions. Because such climatic change should not directly enhance fire occurrence, the increase in fire frequency most likely reflects the influence of highly flammable P. mariana forests, which are more conducive to fire ignition and spread than the preceding vegetation types (tundra, and woodlands/forests dominated by Populus or Picea glauca). Increased lightning associated with altered atmospheric circulation may have also played a role in certain areas where fire frequency increased around 4000 calibrated years before present (BP) without an apparent increase in the abundance of P. mariana. When viewed together, the paleo-fire records reveal that fire histories differed among sites in the same modern fire regime and that the fire regime and plant community similar to those of today became established at different times. Thus the spatial array of regional fire regimes was non-static through the Holocene. However, the patterns and causes of the spatial variation remain largely unknown. Advancing our understanding of climate-fire-vegetation interactions in the Alaskan boreal biome will require a network of charcoal records across various ecoregions, quantitative paleoclimate reconstructions, and improved knowledge of how sedimentary charcoal records fire events.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and delta(18)O data for five Holocene and one modem Porites corals, each covering a growth history of 9-13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from similar to 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca-SST in the 1990s (24.8 degrees C), 10-year mean Sr/Ca-SSTs were 0.9-0.5 degrees C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by similar to 2.5 ky BP, and reached a low of 22.6 degrees C (2.2 degrees C lower) by similar to 1.5 ky BP. The summer Sr/Ca-SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1-2 degrees C higher between 6.8 and 5.0 ky BP, dropping to the present level by -2.5 ky BP, and reaching a low of 28.7 degrees C (0.7 degrees C lower) by similar to 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater delta(18)O values, reflected by offsets of mean 6 180 relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions similar to 2.5 and similar to 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 degrees C warmer than that similar to 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A 35 year chronology from 1965 to 2000 of the deposition of wind-blown sediment is constructed from snowpits for coastal southern Victoria Land, Antarctica. Analysis of local meteorology, contemporary eolian sedimentation, and mineralogy confirm a Victoria Valley provenance, while the presence of volcanic tephra is ascribed to an Erebus volcanic province source. Winter foelm winds associated with anticyclonic circulation are considered responsible for transporting fine-grained sediment from the snow- and ice-free Victoria Valley east toward the coast, while cyclonic storms transport tephra north along the Scott Coast. No trend could be identified in the occurrence of either tephra or wind-blown sediments sourced from the Victoria Valley and retrieved from the snowpits; excavated on the Victoria Lower and Wilson Piedmont Glaciers. We infer this to indicate that the region has not undergone a significant change in weather patterns for at least the last 35 years. Our results also confirm the McMurdo Dry Valleys as a regionally significant source of wind-blown sediment.
Detecting Precipitation Climate Changes: An Approach Based on a Stochastic Daily Precipitation Model
Resumo:
2002 Mathematics Subject Classification: 62M10.
Resumo:
Lake Annie is a small (37 ha), relatively deep (21 m) sinkhole lake on the Lake Wales Ridge (LWR) of central Florida with a long history of study, including monthly limnological monitoring since June, 1983. The record shows high variability in Secchi disc transparency, which ranged from < 1 to 15 m with a trend toward decreasing values over the latter decade of record. We examined available regional meteorological, groundwater and limnological data to determine the drivers and thermal consequences of variability in water transparency. While total nutrient concentrations and chlorophyll-a were highest during years of low transparency, stepwise regression showed that none of these had a signifi cant effect on transparency after water color was taken into account. Repeated years of high precipitation between 1993–2005 caused an increase in water table height, increasing the transport of dissolved substances from the vegetated watershed into the lake. Groundwater stage explained 73 % of the interannual variability in water transparency. Transparency, in turn, explained 85 % of the interannual variability in the heat budget for the lake, which ranged from 1.8 × 108 to 4.1 × 108 Joules m–2 yr–1, encompassing the range reported across Florida lakes. While surface water temperature was not affected by transparency, depths below 5 m warmed faster during the stratifi ed period during years having a lower rate of light extinction. We show that an increase in precipitation of 20 cm per year reduces the depth of the summer euphotic zone and thermocline by 1.9 and 1.6 m, respectively, and causes a 1-month reduction in the duration of winter mixing in this monomictic lake. Because biota have been shown to respond to shifts in light and heat distribution of much smaller magnitude than exhibited here, our work suggests that subtle changes in precipitation linked to climate fl uctuations may have signifi cant physical as well as biotic consequences.
Resumo:
We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multi-decadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 °C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 1 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ~2 °C at 1832 ± 15 yr AD could be related to the 1809 ?D 'unknown' and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The paleoclimatic evidence derived from the M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death likely caused major changes in agricultural activity in the north Aegean region, as reflected in the pollen data from land sites of Macedonia and the M2 proxy-reconstructions. Finally, we conclude that the early modern peaks in mountain vegetation in the Rhodope and Macedonia highlands, visible also in the M2 record, were very likely climate-driven.