Aprubt climate change events in the Northeastern Atlantic Ocean


Autoria(s): Voelker, Antje HL; de Abreu, Lucia
Cobertura

MEDIAN LATITUDE: 38.802697 * MEDIAN LONGITUDE: -9.684697 * SOUTH-BOUND LATITUDE: 35.885500 * WEST-BOUND LONGITUDE: -10.176000 * NORTH-BOUND LATITUDE: 40.581833 * EAST-BOUND LONGITUDE: -7.527833 * DATE/TIME START: 1995-07-07T00:00:00 * DATE/TIME END: 1999-09-15T10:18:00

Data(s)

29/04/2011

Resumo

The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.

Formato

application/zip, 22 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.737449

doi:10.1594/PANGAEA.737449

Idioma(s)

en

Publicador

PANGAEA

Relação

de Abreu, Lucia; Abrantes, Fatima F; Shackleton, Nicholas J; Tzedakis, Polychronis C; McManus, Jerry F; Oppo, Delia W; Hall, Michael A (2005): Ocean climate variability in the eastern North Atlantic during interglacial marine isotope stage 11: A partial analogue to the Holocene? Paleoceanography, 20, PA3009, doi:10.1029/2004PA001091

de Abreu, Lucia; Shackleton, Nicholas J; Schönfeld, Joachim; Hall, Michael A; Chapman, Mark R (2003): Millenial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Marine Geology, 196(1-2), 1-20, doi:10.1016/S0025-3227(03)00046-X

Martrat, Belen; Grimalt, Joan O; Shackleton, Nicholas J; de Abreu, Lucia; Hutterli, Manuel A; Stocker, Thomas F (2007): Four climate cycles of recurring deep and surface water destabilizations on the Iberian Margin. Science, 317(5837), 502-507, doi:10.1126/science.1139994

Schönfeld, Joachim; Zahn, Rainer; de Abreu, Lucia (2003): Surface to deep water response to rapid climate changes at the western Iberian Margin. Global and Planetary Change, 36(4), 237-264, doi:10.1016/S0921-8181(02)00197-2

Tzedakis, Polychronis C; Pälike, Heiko; Roucoux, KH; de Abreu, Lucia (2009): Atmospheric methane, southern European vegetation and low-mid latitude links on orbital and millennial timescales. Earth and Planetary Science Letters, 277(3-4), 307-317, doi:10.1016/j.epsl.2008.10.027

Vautravers, Maryline J; Shackleton, Nicholas J (2006): Centennial-scale surface hydrology off Portugal during marine isotope stage 3: Insights from planktonic foraminiferal fauna variability. Paleoceanography, 21(3), PA3004, doi:10.1029/2005PA001144

Voelker, Antje HL; de Abreu, Lucia; Schönfeld, Joachim; Erlenkeuser, Helmut; Abrantes, Fatima F (2009): Hydrographic conditions along the western Iberian margin during marine isotope stage 2. Geochemistry, Geophysics, Geosystems, 10, Q12U08, doi:10.1029/2009GC002605

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Voelker, Antje HL; de Abreu, Lucia (2011): A Review of Abrupt Climate Change Events in the Northeastern Atlantic Ocean (Iberian Margin): Latitudinal, Longitudinal and Vertical Gradients. In: Rashid, H; Polyak, L; Mosley-Thompson, E (eds.), Abrupt Climate Change: Mechanisms, Patterns, and Impacts. Geophysical Monograph Series (AGU, Washington D.C.), 193, 15-37, doi:10.1029/2010GM001021

Palavras-Chave #Age; AGE; Age model; Age model, core correlation with GISP; Age model, core correlation with GRIP; Age model, optional; Age model opt; B. digitata; based on 10 nearest neighbour samples; Beella digitata; C. nitida; C. pseudoungerianus d13C; C. pseudoungerianus d18O; C. wuellerstorfi and Cibicidoides sp. are adjusted to U. peregrina level by adding 0.64 per mil.; C. wuellerstorfi d13C; C. wuellerstorfi d18O; Candeina nitida; Cibicidoides pseudoungerianus, d13C; Cibicidoides pseudoungerianus, d18O; Cibicidoides wuellerstorfi, d13C; Cibicidoides wuellerstorfi, d18O; Counting >150 µm fraction; Datum level; Dd18O; Delta delta 18O; Depth; DEPTH, sediment/rock; DL; Foram bent d18O; Foraminifera, benthic d18O; Foraminifera, planktic, other; Foram plankt oth; G. aequilateralis; G. bulloides; G. bulloides d13C; G. bulloides d18O; G. calida; G. conglobatus; G. crassaformis; G. falconensis; G. glutinata; G. hirsuta; G. hirsuta d; G. hirsuta s; G. inflata; G. inflata d13C; G. inflata d18O; G. inflata-G. bulloides; G. iota; G. menardii; G. ruber d13C; G. ruber d18O; G. ruber p; G. ruber w; G. ruber w d13C; G. ruber w d18O; G. rubescens; G. sacculifer; G. scitula; G. scitula d13C; G. scitula d18O; G. tenellus; G. trilobus; G. truncatulinoides; G. truncatulinoides d; G. truncatulinoides d13C; G. truncatulinoides d18O; G. truncatulinoides d d13C; G. truncatulinoides d d18O; G. truncatulinoides s; G. truncatulinoides s d13C; G. truncatulinoides s d18O; G. tumida; G. uvula; GI = Greenland interstadial; Globigerina bulloides; Globigerina bulloides, d13C; Globigerina bulloides, d18O; Globigerina calida; Globigerina falconensis; Globigerina rubescens; Globigerinella aequilateralis; Globigerinita glutinata; Globigerinita iota; Globigerinita uvula; Globigerinoides conglobatus; Globigerinoides ruber, d13C; Globigerinoides ruber, d18O; Globigerinoides ruber pink; Globigerinoides ruber white; Globigerinoides ruber white, d13C; Globigerinoides ruber white, d18O; Globigerinoides sacculifer; Globigerinoides tenellus; Globigerinoides trilobus; Globorotalia crassaformis; Globorotalia hirsuta; Globorotalia hirsuta dextral; Globorotalia hirsuta sinistral; Globorotalia inflata; Globorotalia inflata, d13C; Globorotalia inflata, d18O; Globorotalia menardii; Globorotalia scitula; Globorotalia scitula, d13C; Globorotalia scitula, d18O; Globorotalia truncatulinoides; Globorotalia truncatulinoides, d13C; Globorotalia truncatulinoides, d18O; Globorotalia truncatulinoides dextral; Globorotalia truncatulinoides dextral, d13C; Globorotalia truncatulinoides dextral, d18O; Globorotalia truncatulinoides sinistral; Globorotalia truncatulinoides sinistral, d13C; Globorotalia truncatulinoides sinistral, d18O; Globorotalia tumida; H. parapelagica; Hastigerina parapelagica; IMAGES; International Marine Global Change Study; Isotope ratio mass spectrometry; Mass spectrometer Finnigan MAT 251; Melonis sp., d13C; Melonis sp., d18O; Melonis sp. d13C; Melonis sp. d18O; Modern analog technique (MAT), SIMMAX28, distance-weighted; Modern analog technique (MAT), SIMMAX28, non-distance-weighted; N. dutertrei; N. pachyderma d; N. pachyderma d d13C; N. pachyderma d d18O; N. pachyderma s; N. pachyderma s d13C; N. pachyderma s d18O; Neogloboquadrina dutertrei; Neogloboquadrina pachyderma dextral; Neogloboquadrina pachyderma dextral, d13C; Neogloboquadrina pachyderma dextral, d18O; Neogloboquadrina pachyderma dextral and dutertrei integrade; Neogloboquadrina pachyderma sinistral; Neogloboquadrina pachyderma sinistral, d13C; Neogloboquadrina pachyderma sinistral, d18O; O. universa; Orbulina universa; P/D int; P. obliquiloculata; Phosphate; PO4; Pulleniatina obliquiloculata; S. dehiscens; Sea surface temperature, April-June; Sea surface temperature, April-June, standard deviation; Sea surface temperature, January-March; Sea surface temperature, January-March, standard deviation; Sea surface temperature, July-September; Sea surface temperature, July-September, standard deviation; Sea surface temperature, October-December; Sea surface temperature, October-December, standard deviation; Similarity; Similarity index; Sphaeroidinella dehiscens; SST (10-12); SST (10-12) std dev; SST (1-3); SST (1-3) std dev; SST (4-6); SST (4-6) std dev; SST (7-9); SST (7-9) std dev; sum; T. cristata; T. humilis; T. quinqueloba; Turborotalita cristata; Turborotalita humilis; Turborotalita quinqueloba; U. peregrina d13C; U. peregrina d18O; Uvigerina peregrina, d13C; Uvigerina peregrina, d18O; Uvigerina sp., d13C; Uvigerina sp., d18O; Uvigerina sp. d13C; Uvigerina sp. d18O; Vautravers and Shackleton (2006)
Tipo

Dataset