Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations


Autoria(s): Westerhold, Thomas; Bickert, Torsten; Röhl, Ursula
Cobertura

MEDIAN LATITUDE: -29.971784 * MEDIAN LONGITUDE: 14.367473 * SOUTH-BOUND LATITUDE: -31.465220 * WEST-BOUND LONGITUDE: 13.990110 * NORTH-BOUND LATITUDE: -29.374410 * EAST-BOUND LONGITUDE: 15.310880 * DATE/TIME START: 1997-09-26T00:15:00 * DATE/TIME END: 1997-10-06T07:05:00

Data(s)

28/05/2005

Resumo

The middle Miocene delta18O increase represents a fundamental change in earth's climate system due to a major expansion and permanent establishment of the East Antarctic Ice Sheet accompanied by some effect of deepwater cooling. The long-term cooling trend in the middle to late Miocene was superimposed by several punctuated periods of glaciations (Mi-Events) characterized by oxygen isotopic shifts that have been related to the waxing and waning of the Antarctic ice-sheet and bottom water cooling. Here, we present a high-resolution benthic stable oxygen isotope record from ODP Site 1085 located at the southwestern African continental margin that provides a detailed chronology for the middle to late Miocene (13.9-7.3 Ma) climate transition in the eastern South Atlantic. A composite Fe intensity record obtained by XRF core scanning ODP Sites 1085 and 1087 was used to construct an astronomically calibrated chronology based on orbital tuning. The oxygen isotope data exhibit four distinct delta18O excursions, which have astronomical ages of 13.8, 13.2, 11.7, and 10.4 Ma and correspond to the Mi3, Mi4, Mi5, and Mi6 events. A global climate record was extracted from the oxygen isotopic composition. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The oxygen isotope data support a causal link between sequence boundaries traced from the shelf and glacioeustatic changes due to ice-sheet growth. Spectral analysis of the benthic delta18O record shows strong power in the 400-kyr and 100-kyr bands documenting a paleoceanographic response to eccentricity-modulated variations in precession. A spectral peak around 180-kyr might be related to the asymmetry of the obliquity cycle indicating that the response of the dominantly unipolar Antarctic ice-sheet to obliquityinduced variations probably controlled the middle to late Miocene climate system. Maxima in the delta18O record, interpreted as glacial periods, correspond to minima in 100-kyr eccentricity cycle and minima in the 174-kyr obliquity modulation. Strong middle to late Miocene glacial events are associated with 400-kyr eccentricity minima and obliquity modulation minima. Thus, fluctuations in the amplitude of obliquity and eccentricity seem to be the driving force for the middle to late Miocene climate variability.

Formato

application/zip, 7 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.694041

doi:10.1594/PANGAEA.694041

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Westerhold, Thomas; Bickert, Torsten; Röhl, Ursula (2005): Middle to late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): new constrains on Miocene climate variability and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 217(3-4), 205-222, doi:10.1016/j.palaeo.2004.12.001

Palavras-Chave #175-1085A; 175-1087C; Age; AGE; Age model; Benguela Current, South Atlantic Ocean; C. kullenbergi d18O; C. wuellerstorfi d18O; Calculated, see reference(s); Cibicidoides kullenbergi, d18O; Cibicidoides wuellerstorfi, d18O; Comment; Depth; Depth, reference; DEPTH, sediment/rock; Depth ref; DRILL; Drilling/drill rig; Fe; Iron; Joides Resolution; Leg175; Mass spectrometer Finnigan MAT 252; Ocean Drilling Program; ODP; ODP sample designation; Sample code/label; Uniform resource locator/link to file; URL file; X-ray fluorescence core scanner (XRF)
Tipo

Dataset